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Abstract

This thesis describes the development of methods for automatically obtaining coarse
gaze direction estimates for pedestrians in surveillance video. Gaze direction esti-
mates are beneficial in the context of surveillance as an indicator of an individual’s
intentions and their interest in their surroundings and other people. The overall
task is broken down into two problems. The first is that of tracking large numbers
of pedestrians in low resolution video, which is required to identify the head regions
within video frames. The second problem is to process the extracted head regions
and estimate the direction in which the person is facing as a coarse estimate of their
gaze direction.

The first approach for head tracking combines image measurements from HOG
head detections and KLT corner tracking using a Kalman filter, and can track the
heads of many pedestrians simultaneously to output head regions with pixel-level
accuracy. The second approach uses Markov-Chain Monte-Carlo Data Association
(MCMCDA) within a temporal sliding window to provide similarly accurate head
regions, but with improved speed and robustness. The improved system accurately
tracks the heads of twenty pedestrians in 1920 × 1080 video in real-time and can
track through total occlusions for short time periods.

The approaches for gaze direction estimation all make use of randomised decision
tree classifiers. The first develops classifiers for low resolution head images that are
invariant to hair and skin colours using branch decisions based on abstract labels
rather than direct image measurements. The second approach addresses higher res-
olution images using HOG descriptors and novel Colour Triplet Comparison (CTC)
based branches. The final approach infers custom appearance models for individual
scenes using weakly supervised learning over large datasets of approximately 500,000
images. A Conditional Random Field (CRF) models interactions between appear-
ance information and walking directions to estimate gaze directions for head image
sequences.
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CHAPTER1

Introduction

1.1 Problem Definition

Video surveillance is an expanding industry sector with cameras being introduced

in increasingly diverse locations. Although there are no official statistics, a recent

study [36] estimated that there are approximately 1.85 million surveillance cameras

in the UK, of which approximately 30,000 monitor public spaces. Unfortunately, as

the number of cameras increases, so does the need for monitoring them.

Currently almost all surveillance monitoring is performed by humans and each in-

dividual is expected to monitor approximately 20-100 cameras simultaneously [56],

with the probability of crimes being missed increasing with the number of cam-

eras being monitored [38]. Although the video is usually recorded, this is typically

at a low frame rate (≈ 1fps) and highly compressed due to storage limitations.

The retrospective examination of surveillance footage also removes the possibility
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of intervention. One of the primary uses of surveillance is to provide the evidence

required to convict criminals, however prosecutions are often impossible because of

the poor video quality [37]. When an observer notices a crime taking place, the

majority of surveillance systems will allow them to manually increase the quality

of the recording, either for a single chosen camera or for a limited period of time.

Observers may also control active cameras to obtain higher resolution imagery.

In addition to crime detection, visual surveillance allows the detection of various

other types of behaviour requiring intervention. An observer can call for help if

a person appears to be in need of medical assistance and can locate a lost child

or animal. There is also the potential to detect events involving many people, for

example in a crowded place the behaviour of multiple people could indicate a risk of

people getting crushed, or a large number of people rushing out of a building could

suggest the possibility of a fire.

In the foreseeable future it is unlikely that the role of people in a surveillance

system could be entirely replaced by automated systems, however there are two

key areas where computer vision systems can be of assistance. The first involves

increasing the frequency with which a human observes the correct camera when an

event requiring intervention is taking place. If a computer vision system were able

to obtain even a small amount of information on the likelihood of anomalous events

taking place, the frequency with which each camera is viewed could be adjusted

accordingly to increase the likelihood of detection.

The second area where computer vision could be of assistance is to improve the

quality of recordings where either no human observer is present or the likelihood

of a crime or other event taking place is not large enough to justify immediate

notification. Existing recording systems have the ability to increase the recording

quality based on motion, however storage space could be used more efficiently by

only increasing the recording quality for particular areas of a scene. If enough

information were available, it would also be possible to automatically direct active
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cameras to obtain high resolution images of the people involved.

To date, most approaches for the detection of anomalous events have been based

on trajectories [54, 79, 80], however trajectories provide only a limited amount of

information and are likely to be insufficient for detecting subtle differences in be-

haviour. The video quality and resolution, coupled with real-time requirements,

make detailed analysis of each individual infeasible, however one aspect that is ex-

pected to be relatively simple to measure is the direction in which a person is facing.

The pose of a pedestrian’s head has the potential to yield a significant amount of

useful information because the direction in which people look is a strong indicator of

their focus of attention. The focus of an individual’s attention often indicates their

desired destination whereas mutual attention between people indicates familiarity,

and any single object or person receiving attention from a large number of people is

likely to be worthy of further investigation.

There are many types of behaviour for which we expect patterns of gaze be-

haviour to be different from that of ordinary pedestrians, whose gaze direction tends

to be towards their direction of motion. A person in distress is likely to look in many

different directions in the hope of obtaining assistance, and a criminal is likely to

frequently look at security guards, shop assistants and security cameras. In addition

to these specific patterns of behaviour, we expect that any event of sufficient interest

to attract the attention of security staff is also likely to attract the attention of other

people in the vicinity. This is particularly useful because pedestrians perform the

difficult task of detecting any anomalous events and provide output in the form of

their gaze direction, which we expect to be significantly easier to measure than the

anomalous event directly.

The purpose of the work described in this thesis is to develop methods for ob-

taining coarse gaze estimates from surveillance video, with the aim of providing

information that can benefit either a human observer or a fully automated system.

Although methods for gaze estimation have already received significant attention
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Figure 1.1: Sample frames from the video datasets that are used as a source of head
images. Videos exhibit a wide variety of viewpoints, lighting conditions and crowd
densities.

(see section 2.1), very little past work has dealt with gaze estimation in video which

is representative of what would be obtained in a genuine surveillance installation.

On the contrary, the work presented in this thesis is intended to address the full

difficulty of the problem by working with the most realistic data that could be rea-

sonably obtained. Some examples from the datasets that will be used are shown in

figure 1.1.

1.2 Practical Considerations

In the intended application domain of visual surveillance little can be assumed about

the people being monitored or their surroundings. In particular for a gaze estimation
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system to be of practical value it must be able to estimate the gaze directions for

previously unobserved people. This is significantly more difficult than working with

only known people in known locations because there are many factors which can

cause the appearance of individuals to differ:

• Pedestrian Appearance: People have different skin colours and textures,

different facial structure, and variations in hair colour and style.

• Scene Lighting: Scenes can be illuminated from different directions, with

variations in the level of diffusion and the occurrence of shadows.

• Colour Appearance: Colours have different appearances under sunlight and

different forms of artificial light

• Camera Intrinsics and Extrinsics: The height of the camera results in peo-

ple being observed from more or less acute angles and there may be distortion

in the images.

• Scene Contents: Scenes often contain cluttered backgrounds and people can

be occluded by other people or foreground objects.

• Clothing: Pedestrian clothing has a wide variety of shapes and colours which

can make people difficult to locate.

• Headwear: Hats, glasses and scarves can obscure parts of the head

• Pedestrian Behaviour: Pedestrians behaving naturally will talk on mobile

telephones, eat, drink, and talk, which all result in parts of the head temporar-

ily changing in appearance.

• Image Sensor: Incorrectly focussed cameras can contain blur, low light levels

will produce images with high frequency noise and/or motion blur, and image

compression can result in quantisation artefacts being introduced.
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Some of the variation in appearance due to these factors will not be present

between training and testing datasets if the same people or scenes appear in both,

so it is likely that any experiments using them would have better performance than

with independent training and testing datasets. Unless otherwise specified, the

experiments in this thesis result from testing on images from people who do not

appear in any training data, so the results reflect what would be expected in a

genuine installation.

A second consideration which has influenced the choice of research direction is

the need for a practical system to be able to process video in real-time so that the

output can be used to alert the relevant person during or shortly after an event

occurs. Any system which cannot operate in real-time is unlikely to provide any

significant benefit over simply recording the video.

Since surveillance cameras are generally required to monitor reasonably large

spaces, people tend to occupy only a small portion of the image area. The result

is that we must be able to estimate the gaze direction for head images that are

typically between ten and thirty pixels in diameter.

The last consideration results from our inability to constrain the movement of

pedestrians. In many cases pedestrians will be facing away from the camera so we

must be able to estimate their gaze direction through a full 360◦ range of rotations

about a vertical axis, which will be referred to as the head pan angle. The heads of

pedestrians in all datasets exhibit rotations other than pan but no attempt will be

made to measure these rotations. The head pan angle is considered to be the most

important because in most indoor and outdoor scenes, the ground plane location is

sufficient to identify people and objects.
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1.3 Thesis Outline

In this first chapter the problem that is the subject of this thesis has been intro-

duced at a high level. Chapter 2 provides a detailed review of the state-of-the-art

in the estimation of coarse gaze directions, an overview of applications, and a re-

view of methods for obtaining head images. Chapter 3, the first technical chapter,

begins by describing attempts at gaze estimation in very low resolution images. To

validate this approach, in chapter 4 an automatic head tracker is developed for ob-

taining head images and improvements to the gaze estimation methods are made as

a consequence. A complete working system is demonstrated, allowing the key issues

affecting the accuracy to be identified. These issues are addressed in the following

two chapters.

Chapter 5 improves the accuracy of the automatic head location estimates by

developing a sliding window based tracking system that fully exploits all of the in-

formation that is available. In chapter 6 the problem of insufficiently representative

training data is addressed by automatically learning gaze estimators from hundreds

of thousands of unlabelled images. Finally chapter 7 concludes the thesis by sum-

marising the key points and suggesting directions for future research.

1.4 Contributions

The research described in this thesis makes contributions in the areas of coarse

gaze direction estimation, pedestrian tracking, and weakly supervised learning. The

specific contributions made in each of the four technical chapters are the following:

Chapter 3:

• A randomised fern based image classifier with predicate based branches is

proposed along with a corresponding algorithm for inference.
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• A method for learning colour distributions corresponding to abstract hair, skin

and background labels to improve estimation accuracy is developed.

• Modifications are proposed to the standard methods for combining decision

tree estimates to make best use of the predicate ferns.

Chapter 4:

• A multi-target tracking system is developed for the specific purpose of obtain-

ing stable head image sequences

• Robust randomised fern based gaze classifiers are developed, making use of

proposed Colour Triplet Comparison (CTC) image measurements to provide

invariance to lighting effects.

• A complete system for measuring attention in large scale scenes is demon-

strated. This is believed to be the first system to measure attention in scenes

where pedestrians are free to walk around and behave naturally.

Chapter 5:

• A principled objective function is developed to allow both accurate location

estimates and robust data associations to be made, including the ability to

track through total occlusions.

• A new move type for Markov-Chain Monte-Carlo Data Association (MCM-

CDA) is introduced to allow the removal of false positives, with the potential

for generalisation to also identify different object types.

• An efficient and scalable multi-threaded architecture is proposed to allow large

crowds of pedestrians to be tracked in real-time.
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Chapter 6:

• A Conditional Random Field (CRF) model is developed to accurately represent

the interactions between gaze directions and walking directions.

• A complete system for inferring gaze directions and training a forest of ran-

domised trees is demonstrated.

• A hybrid decision tree is proposed to allow efficient inference, with the potential

for additional benefits in a distributed system.
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CHAPTER2

Related Work and Datasets

Having introduced the problem, we now examine existing work with ei-

ther similar objectives or potentially useful methods. The chapter estab-

lishes a foundation upon which the research described in later chapters

will be built.

The contents of this chapter are intended to give an overview of existing work

that is related to the use of coarse gaze estimation in visual surveillance. The review

is divided into five sections; section 2.1 covers existing work that is relevant to head

pose estimation, with the gaze estimation performance of humans briefly covered

in section 2.2 and a discussion of applications of gaze estimation in section 2.3.

Section 2.4 describes methods which have been or could be used to locate heads in

surveillance video. The majority of algorithms are only briefly described here, since

details of relevant algorithms have been included in the corresponding chapters,

however section 2.5 covers randomised trees and ferns in detail since they will be
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referred to extensively throughout this thesis. A description of the datasets used

for the training and evaluation of algorithms throughout the remaining chapters is

covered in section 2.6.

2.1 Methods for Coarse Gaze Estimation

Many different methods have been applied to the problem of coarse gaze estimation,

however the low resolution of the head images that are typically found in surveillance

video prevents the application of techniques which require detail such as those which

track feature points or detect facial features [86, 52, 24, 92]. The majority of past

research into head pose measurement in low resolution video has involved the use of

labelled training examples which are used to train various types of classifiers.

The following sections provide an overview of existing approaches to gaze direc-

tion estimation, categorised by the main algorithm used. Publications that have

used high resolution images have been included only if they could potentially be

applied to lower resolution imagery. A table comparing the quantitative results

from all of the related work can be found at the end in section 2.1.7, along with a

discussion of some of the general problems with existing approaches.

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are used to map continuous inputs to one or

more outputs, so can be used for both direct regression and classification. ANNs

consist of one or more layers of connected nodes which output values based on their

inputs from the previous layer. The interested reader is referred to Bishop [13] for

a more detailed explanation.

Zhao et al. [137] trained a multi-layer network using greyscale images which had

been normalised so that the distribution of intensities were similar. Nineteen output

nodes provided the relative probabilities of different pan angles spaced ten degrees

11



apart. Brown and Tian [19] use a similar method and subsequent work by Tian et al.

[122] improved the accuracy by combining results from two cameras. Gourier et al.

[42] used similar input data, but trained individual single-layer networks for each of

22 different pan classes and estimated the angle using the maximum response. These

approaches resulted in small errors of approximately 10◦ for a frontal 180◦ range of

movement, but the datasets were somewhat contrived in that images were collected

in controlled environments with fixed backgrounds and no variation in lighting, scale

or rotations about other axes.

A similar line of research began simultaneously with the work of Stiefelhagen

et al. [120, 119]. A three layer network was trained using normalised greyscale

images but images filtered with both horizontal and vertical edge detectors were

also included, with the best results being obtained from a combination of all three.

Voit et al. [125, 126] continued with the same approach, but classified images over

a full 360◦ range. Although the classification rate was almost random at 15.8% for

a single camera, the accuracy was improved to 39.4% by combining the results from

four cameras, each having a different view of the subject.

Rae and Ritter [100] used a combination of colour and texture information. One

neural network was trained to recognise skin-coloured regions of the image and an-

other was trained to fit an ellipse around the skin region corresponding to the face

using responses from Gabor wavelet filters. Finally a third network mapped more

Gabor wavelet filter responses to estimations of the head pan and tilt angles. Al-

though accurate with only 9◦ RMSE (Root Mean Square Error), a problem identified

by the authors was a significant degradation in performance when the network was

tested on images from a different person to the one used for training.

Another variation was made by Seeman et al. [108], who used stereo cameras to

obtain a depth map which was used in addition to the normalised greyscale head

image to train a three layer network.

One of the main problems of ANNs is that they have a tendency to over-fit to
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their training data. It seems likely that this is a problem in practice, since none of

the reviewed approaches show evidence of having different people in the testing and

training datasets. The appearance of people across different scenes varies enormously

and it would only be feasible to collect training data representing a small subset of

appearances. In recent years, ANNs have been largely superseded by Support Vector

Machines (SVMs) which tend to generalise better to unseen data.

2.1.2 Dimensionality Reduction

Dimensionality reduction methods map images to points in a lower dimensional

space, with the aim of increasing the ratio of useful data to redundant data and in

many cases to allow direct pose estimation from the shape of the manifold in the

low dimensional space.

The first approaches were those of Gong at al. [39, 78] which were based on

Principal Components Analysis (PCA). PCA identifies a set of principal components

that can be used to represent the original data, where the first components represent

the directions of most variation and the last components represent the directions of

least variation. For high dimensional data such as that from images, many of the

principal components have little or no variation so can be omitted. The result

is a compact representation of the original data which improves the efficiency of

subsequent analysis using standard classification and regression algorithms.

The approach taken by Morency et al. [82] also used PCA but made use of both

intensity and depth image priors to customise the pose estimator for individual

people. Srinivasan and Boyer’s approach [116] used PCA to define eigenspaces for

discrete classes so that the gaze direction for a test image could be determined by

the best matching eigenspace. Wei et al. [129] also found separate eigenspaces for

discrete direction classes, but in this case the input images were first filtered using

Gabor wavelet filters. Guo et al. [43] tried two variations on PCA (2DPCA and

BMPCA) which were intended to take advantage of the 2D structure of the images.
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PCA has been superseded in more recent times by manifold learning methods

[34, 8, 6, 23, 71, 49] which also map images into a lower dimensional space, but

with different objectives. Where PCA aims to reduce the redundancy in the original

image data to allow a more compact representation, manifold learning methods do

not attempt to represent all of the original data. Manifold learning methods attempt

to learn a one-way mapping from the high dimensional space into a low dimensional

space, with the aim of making images that have similar parameters close together

and those with very different parameters far apart.

An advantage of these methods over PCA is that the parameter (i.e. the gaze

direction) has some geometric significance in the low dimensional space. After map-

ping the test image to the lower dimensional space in which the manifold is embed-

ded, various different methods have been used to estimate the gaze direction such

as K-Nearest Neighbours [34], linear regression [6], a relevance vector machine [128]

or support vector regression/cubic splines [8].

Although these methods report superior accuracy over other methods, they have

all been applied to particularly contrived datasets where great care has been taken

to constrain the environment and head motion to ensure that the only differences

between images result from changes to the head pan angle and in some cases a

one dimensional rotation in the lighting direction. Also, none of the reviewed work

included a comparison of the method to the equivalent method (e.g. Nearest Neigh-

bour) in the original high dimensional space, so the benefit of the dimensionality

reduction is unproven. Two of the reviewed papers [34, 128] performed experiments

in which the number of dimensions used to embed the manifold were varied and in

both cases the accuracy increased with the number of dimensions, which suggests

that any performance benefits might be due the nonlinear transformation from the

original high dimensional space to the embedding space rather than the removal of

redundant information.
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Figure 2.1: Reprojection of a head image using an ellipsoid model. The sample
images show the reprojections in steps of ten degrees.

2.1.3 Geometric Models

One of the earliest and simplest attempts at head pose estimation was by Brunelli

[20], whose model was based on the assumption that front facing heads are more

symmetrical than non-frontally facing heads. By measuring the level of asymmetry

in the image gradients around the eye locations, clockwise rotations of up to 50◦

were measured. It is unclear how the system would perform if a person capable of

rotating their head both clockwise and anticlockwise were encountered.

Chen et al. [25] used a slightly more sophisticated model in which the hair and

skin regions were identified using colour models. A model was learned which linked

the head pose with the region centres and axes of least inertia. Sherrah and Gong

[109, 110] learned the correlation between the head pose and the size and location

of the face relative to the rest of the head. Faces were detected using an SVM and

the head was tracked using a particle filter based skin colour tracking algorithm.

Pappu and Beardsley [95] started a line of research where the head was modelled

as an ellipsoid. A single reference image was used to generate synthetic rotated

head views which are matched to head images in the video to determine the rela-

tive rotation. The reference image is simply back-projected onto the ellipsoid and

various rotations are applied before projecting back onto the initial image to give

the synthetic views, as shown in figure 2.1. The head rotation is then estimated by
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taking the synthetic image that is closest to the observed image.

A similar approach was taken by Wu and Toyama [134], who also modelled the

head as an ellipsoid but projected the locations of wavelet-like features rather than

a plain texture. This had the advantage of providing a certain amount of invariance

to lighting and colour information which allowed a generic head model to be learnt,

though the head images had to be detailed enough to allow the calculation of wavelet

responses.

Canton-Ferrer et al. [21] approached the problem by first using colour histograms

to estimate the probability that pixels were skin. The projections from four different

camera views onto an ellipsoid allowed a skin probability texture to be learnt which

was fitted to subsequent views using a particle filter to determine the relative pose.

Most recently, Zabulis et al. [136] modelled the head using a sphere, but in-

stead of learning an appearance model, a generic face detection algorithm [124] was

used. The appearances from multiple camera views were mapped onto a sphere and

the texture was unwrapped before the detector was applied. An advantage of this

approach is that a standard face detection module that is known to work well for

many people under large variations in lighting could be used. Unfortunately eight

cameras were required to ensure that the face was always visible from at least one

view, making it impractical for most purposes.

2.1.4 Nearest Neighbour and Decision Tree Classifiers

Nearest neighbour classifiers compare test images with training examples to find

the closest match, with the resulting classification being that of the matching train-

ing example. Decision tree classifiers perform a similar function but are able to

locate close training data more efficiently. Since decision trees are frequently used

throughout this thesis, a detailed description is deferred to section 2.5.

Niyogi and Freeman [87] classified head orientations by comparing the test image

to a number of examples for which the correct orientation was known and taking
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the orientation of the most similar example. A decision tree was built using the

training examples to allow the closest match to be efficiently found. Robertson et

al. [106, 105] used a similar method but performed the additional step of using back-

ground subtraction and a skin colour histogram to identify the probabilities of pixels

belonging to the foreground and skin regions respectively before classification. To

allow nearest neighbours to be identified more efficiently, Robertson also constructed

decision trees from the examples. A significant drawback of Robertson’s approach

is that the skin colour depends on the individual person and the lighting conditions

of the scene, so the skin colour histogram has to be manually defined for each video

sequence.

2.1.5 Probabilistic Appearance Models

Ba and Odobez [4] used the product of a texture term and a colour term to infer head

poses. The texture term resulted from first dividing example head images into classes

according to their orientations and building feature vectors from the convolutions

of 2D Gabor wavelets. These feature vectors were used to learn Gaussian mixture

models for each orientation, which were then used to test the relative probability of

a test image belonging to each direction class. The colour based term was obtained

by classifying each image pixel as skin or non-skin based on a fixed colour model

and comparing the test image to the mean pixel classification from each group of

training data. Later work by Smith et al. [114] used a similar set of features for

which class probabilities were estimated using simpler diagonal Gaussian models.

Aghajanian and Prince [1] divided each head image into a number of smaller

patches and estimated the probability of angle classes at 10◦ intervals by comparing

the observed patches with those from a library of patches. The probabilities of each

patch belonging to each direction class were learned using approximately 10000

training images.
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Figure 2.2: Examples of mean templates for eight direction classes, similar to those
used by Orozco. These were the result of averaging over approximately 200 images
per class.

2.1.6 Support Vector Machines

A standard Support Vector Machine (SVM) classifies data points into one of two

classes by partitioning the space of corresponding feature vectors using a hyperplane.

During training, the hyperplane is optimised to maximise the distance between the

plane and the closest points from the two classes, which helps the classifier to gen-

eralise to unobserved data. Multi-class SVMs work by training a binary SVM either

for each pair of classes (one-against-one) or between each class and all other classes

combined (one-against-rest). A one-against-one SVM uses voting to combine the

estimates from each of the binary classifiers whereas a one-against-rest SVM selects

the class for which the data is furthest from the dividing hyperplane.

In the most recent work by Launila and Sullivan [63] a number of different

image measurements were made. These included the normalised greyscale image,

a gradient filtered image, edge detections, Gabor filter responses, Gaussian filter

responses, and the Luv colourspace representation of the image. Since using all of

this information would encourage overfitting, a subset of the features were selected

for SVM training. Three methods were tested; the first was a greedy selection

method that chose the features providing the greatest performance increase. The

second chose all features that had sufficient mutual information with the true class.

The third method involved training individual classifiers for each feature type and

using boosting to combine the outputs, which performed the best out of the three

methods.

Another recent system described by Orozco et al. [91] generates feature vectors

18



from head images by comparing them to mean templates for each class, which were

generated by taking the mean pixel intensities across all of the training data in

the corresponding class. Some example mean templates are shown in figure 2.2.

The Kullback-Liebler divergence was used to compare the pixel intensities of a test

image with those from each of the eight class templates, the result of which was

classified with a one-against-rest SVM. The reported results were good with up to

81% correctly assigned to one of eight classes, however it seems likely that this was

due to the training and testing data being taken from the same two video sequences.

Ng and Gong’s system [85] trained five binary SVM classifiers to distinguish

head images within different ranges of gaze directions from the same set of non-

head images. Within a low dimensional eigenspace, the support vectors from the

individual classifiers were all close to those from adjacent pose ranges. This property

allowed the gaze directions for head images to be estimated by finding the closest

support vectors and averaging over the corresponding gaze directions from the data

used to train the SVM. The method appears to make the assumption that similar

support vectors will be found for adjacent pose classes, which might not be the case

in general.

Huang et al. [51] trained a 3-class one-against-rest SVM using normalised greyscale

images, and were able to achieve 100% accuracy on their dataset. There were how-

ever only three direction classes representing frontal gazes and directions of 30◦ to

the left and to the right, and the test images were captured under controlled condi-

tions. Ma et al. [77] used Gabor filter responses as input to a one-against-one multi

class SVM with seven classes. Another recent paper by Siriteerakul et al. [113] also

used one-against-one SVMs, in this case to classify images into eight pose classes.

The paper postdates the majority of work in this thesis and the features used as

input to the SVMs appear to have been inspired by the features that are used in

chapters 3 and 4. The results show Siriteerakul’s SVM to have an accuracy of 58.2%

on a realistic low resolution dataset, and provide a comparison with Orozco’s mean
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template method [91] which only classified 31.3% of images correctly.

An unusual geometric approach was taken by Wang and Brandstein [127], who

detected the hairline and sampled the location in six places to construct feature

vectors. Sixty training samples of known head pose were used to train a support

vector machine, which could then be used to identify the most likely head pose.

The method is heavily dependent on the hairline being easy to extract and has little

room for generalisation so would be unlikely to work with anybody not included in

the training data.

SVMs have been used in many recent approaches, but again none have shown

results for datasets containing the large numbers of different appearances of people

that would have to be processed for practical applications.

2.1.7 Summary of Existing Methods

A comparison of publications reporting experimental results for coarse gaze direction

estimation is provided in table 2.1. Results were reported either as a Mean Absolute

Angular Error (MAAE), Root Mean Square Error (RMSE), or as a percentage of

test images that were correctly classified into a number of discrete classes. A va-

lidity rating from A-E has been assigned to each of the publications in the table to

indicate the level of separation between the datasets used for training and testing;

the meanings of the validity ratings are explained in table 2.2.

Direct comparison between methods is difficult, not only because of differences

in the way in which accuracy is measured but also due to differences in training

data. Most data appears far from that which might be encountered in a security

monitoring situation due to a lack of variation in lighting conditions, appearances

of the test subjects and range of head rotation. Backgrounds were often plain to

simplify foreground separation and in many cases the distribution of gaze directions

in the test data was highly non-uniform, a property which was exploited through

priors or motion models that were learned from the same situation [4].
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In addition to the papers reviewed here, the interested reader is referred to a

recent review of both fine and coarse gaze estimation methods by Murphy-Chutorian

and Trivedi [83], which includes a comparison of results using popular datasets.
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Validity Description
A The testing and training datasets contain the same images
B Same videos used, but no images appear in both datasets
C Same people and scenes but separate videos for each dataset
D Same people but different scenes for each dataset
E Different people and different scenes in each dataset

Table 2.2: The five levels used to rate the validity of experiments due to correlations
between training and testing datasets for the publications in table 2.1. A range is
specified in some cases where insufficient details on datasets were provided. Note
that only E represents a realistic scenario.

2.2 Human Performance

As with most vision problems, it is interesting to compare performance with the

ability of a human. Some existing work has included studies on the ability of humans

to classify head images according to the gaze direction. Gourier et al. [42] performed

tests which gave a MAAE of 11.8◦ measured across 72 different people. This result

was consistent with the 10.9◦ MAAE that was measured by Aghajanian and Prince

using two human test subjects.

2.3 Applications of Coarse Gaze Estimates

Once the gaze direction of an individual has been determined, it must be used to

provide information that is useful to humans or to an automated reasoning system.

This section covers research which attempts to derive useful information from the

gaze direction of one or more people.

A large amount of research into head pose estimation has been intended for the

purpose of tracking attention in meetings to allow cameras to be automatically di-

rected at the speaker for video conferencing. Stiefelhagen [118] measured both head

pose and eye gaze simultaneously for such a purpose and deduced that with four

speakers, the focus of attention could be identified from head pose alone 87% of the

time. The research demonstrated that the gaze direction is highly correlated with
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the direction in which a person is facing, a promising result for surveillance appli-

cations. Sherrah et al. [111] use both head pose and action recognition as inputs

to an attention tracking system with the aim of identifying the speaker in a sim-

ple meeting scenario involving three people. Gaze directions and recognised actions

were used as input to a time-delay radial basis function neural network to identify

the current speaker. Ba and Odobez [89, 5] showed that gaze estimation accuracy

in meeting scenarios could be improved by modelling the interactions between con-

textual information such as the locations of people and whether or not people were

currently participating in the conversation.

Another common application is in the context of driver monitoring [84, 95, 26,

43]. The two main motivations are to detect driver fatigue and to monitor where the

driver is looking so that a warning can be given if potential hazards develop outside

of their field of view. An individual’s gaze direction also has potential for use in

more general control applications; Wei’s [129] intended application was to control

automated wheelchairs.

Some more relevant applications are those where the gaze is estimated for freely

moving people. Both Farenzena et al. [76] and Robertson et al. [106] used gaze

estimations to automatically identify interactions between people. Individuals were

considered to be interacting if they were looking at one another and were in close

proximity.

Robertson et al. [104] also developed a surveillance system based on a combina-

tion of gaze direction, recognised actions, and the person’s location and direction of

motion. A database of this information was collected from a training sequence and

used to classify behaviour in subsequent video by identifying primitive behaviour

types. The behaviour types were learnt from manually labelled sequences in which

scene locations and different types of behaviour had been identified. Specific se-

quences of low level behaviour which constituted high level behaviour were detected

using a Hidden Markov Model, for example the primitive actions of walking on a
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pavement followed by walking on a road and then walking on a pavement again would

cause the detection of the high level action crossing a road.

A system for identifying the path of a customer’s gaze across shelves in a shop was

developed by Liu et al. [74]. In this work a head model was fitted to high resolution

video of a single customer. A related application was proposed by Haritaoglu and

Flickner [44], who used measurements such as the gaze direction of observers to

customise the advertisements that were displayed on video screens. The intended

application of Smith et al. [114] was also in the domain of advertising, however

in this case the purpose was to automatically calculate the number of times that

advertisements were viewed.

A recent application by Patron et al. [97] used the head orientation in combi-

nation with local motion cues to recognise specific interactions (e.g. handshakes)

across a wide variety of video sequences. Including the gaze direction improved

the classification accuracy because people usually look at one another when they

interact.

2.4 Head Tracking

Having reviewed the different methods that have been used for estimating gaze

directions from head images, we now consider methods that could be used to locate

the head images within surveillance video.

General multi-target tracking is an old problem in computer vision and the rel-

evant literature is vast. In this section only methods that have been used for head

tracking in the past and recent methods that are of particular relevance will be

reviewed.
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2.4.1 Existing Methods for Head Tracking

In existing literature on coarse gaze estimation, in most cases the head locations

were hand labelled [34, 8, 6, 116, 134, 126, 125]. In other cases the head was tracked

but it was assumed that the head moved very little throughout the video sequence

[100, 95]. Although these methods appear to give reasonable results, they were all

only applied to very small datasets and it is either stated or seems likely that images

of the test subjects were used to train them.

Traditional methods for pedestrian tracking rely on background subtraction.

Some gaze estimation systems used background subtraction followed by silhouette

analysis to locate pedestrian’s heads. Robertson [105] simply assumed that the

top one-seventh of the silhouette represented the head, whereas Tian [122] used a

model of the silhouette outline to locate the extremity corresponding to the head.

Zabulis [136] found the head by fitting a sphere to silhouettes from eight cameras

simultaneously.

Another popular tracking algorithm is mean-shift [28], which was used in other

work by Robertson et al. [106], however this required manual initialisation for each

pedestrian so would have to be combined with a detection algorithm for initialisation.

A method which combined background subtraction with Histogram of Oriented

Gradient (HOG) based detections was used by Launila [62]. Moving regions were

identified by running an unspecified tracker in a corresponding overhead view, from

which location estimates were converted to the side view using a homography. A

HOG [29] detector was then used to localise the head1. A Kalman filter was used

to smooth location estimates, which were then further refined by fitting ellipses

to the corresponding images with backgrounds subtracted. Finally, the colours in

each image were clustered and any clusters that were identified as background were

removed.

1This is similar to the approach developed in chapter 4, however it should be noted that the
work in chapter 4 pre-dates Launila’s
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Lee [64] used background subtraction to separate people from a cluttered back-

ground and located the heads using a simple model of a head and shoulders which

searched for a specific configuration of oriented edges around the silhouettes. Unfor-

tunately a number of assumptions are made and there is no evidence of substantial

evaluation which indicates that the method is unreliable.

The most sophisticated tracking systems to be used for coarse gaze estimation

are based around particle filtering. Lanz’s multibody tracker [61], which was used by

Farenzena et al. [76] models the interactions between the movements of individuals

using a Markov Random Field (MRF) which allowed predictions to take into account

the possibility of occlusions. Smith et al. [114] modelled the interactions between

people in a similar way using a Dynamic Bayesian Network, but modelled both

head and body locations jointly to provide more accurate head locations. A particle

filter was also used by Ozturk et al. [92]. One recent paper of particular relevance,

which again postdates the work in chapters 3 and 4, is Ali and Dailey’s [2] system

for tracking heads in dense crowds. Heads were detected using Viola and Jones’

algorithm [124] and tracked using a particle filter.

Li et al. [69] combined the outputs from multiple detection and tracking algo-

rithms using a particle filter to track the head location. The first detector was a tree

structured detector that was trained using an algorithm derived from AdaBoost and

used the same Haar-like features as Viola and Jones for branch tests. The second

detector was a colour spatiogram, which is similar to a standard colour histogram

but also includes spatial information. Each bin in a spatiogram stores not only the

quantity of pixels in the corresponding colour range but also the mean and vari-

ance of their location, allowing regions containing the same colours as the object

but in a different arrangement to be rejected. The third detector was a simple con-

tour detector which modelled the head as an ellipse. Results from three data sets

demonstrated a detection rate of 80%-90%.

Orozco et al. [91] used Dalal and Trigg’s Histogram of Oriented Gradients (HOG)
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detector [29] to find full and then upper body detections, followed by connected

components analysis on the result of background subtraction to identify the head

region. Gong et al. [40] improved on the method by learning a part-based model

which was able to improve the accuracy of the head location estimates by learning

separate models for pedestrians when viewed from different directions.

Seeman et al. [108] used Viola and Jones’ face detector [124] to detect faces

and initialise a skin colour model. In subsequent frames, skin coloured regions were

identified and validated by ensuring that the size in pixels was consistent with the

depth estimations from stereo images using a known camera calibration.

2.4.2 Potential Methods for Head Tracking

In order for a head pose estimation to be made, the head must first be located in

every frame of video. This is a difficult task because although frontal views of faces

contain a large amount of information and are easily identifiable in high resolution

images, in low resolution images there is much less detail and the face is not visible

at all when pedestrians are looking away from the camera. There has been little

research into the specific task of identifying non-frontal views of heads, however the

more general task of locating people has received much more attention.

There are two main groups of algorithms that can be used; those which detect

objects in single frames and those which track either just the head or the entire

person over multiple frames. Both groups cover broad areas of computer vision, so

only the research that is most likely to be of relevance has been reviewed here. A

broad review of methods for finding and tracking people with the aim of identifying

their body pose can be found in the survey undertaken by Moeslund et al. [81].

Detection Algorithms

One of the most commonly used detection algorithms, in particular for face recog-

nition, is the detector developed by Viola and Jones [124] and later improved by
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Figure 2.3: Illustration of how HOG descriptors are calculated. Images are divided
into cells and the gradient direction and magnitude at every pixel is used to make a
weighted vote into the corresponding orientation bin for the cell’s histogram. Dalal
and Triggs used nine orientation bins per histogram and considered the sign of the
gradient to be irrelevant, so each bin represents a 20◦ range within the 180◦. The
orientation histograms are then separately normalised across every possible 2 × 2
block of cells and combined to give the complete descriptor. The result is that most
cells (those not at the edges of the image) have their histograms included four times
under different normalisations.

Lienhart and Maydt [72]. The classifier uses AdaBoost to find the features which

are most useful for identifying a given object and combines their responses to form

classifiers, which are then combined to make a cascade where each classifier can

choose to either reject an image region or pass on the decision to the next classi-

fier. A sliding window search is performed over the entire image, however this is

fast enough for real-time applications because the features, which resemble Haar

wavelets, can be calculated efficiently using an integral image. Krupper et al. [57]

used a second classifier to detect upper body images which improved the accuracy

of face detection by providing context-based priors.

More recently, Dalal and Triggs’ Histogram of Oriented Gradients (HOG) based

detector has proven to be extremely effective for pedestrian detection and it has

also proven valuable for detecting other objects such as upper body regions [31].

The detection algorithm uses normalised local gradient histograms (see figure 2.3)

as input to a binary SVM classifier. The local gradient histograms are calculated by

dividing images into cells and generating gradient orientation histograms for each.

The histograms are all normalised across blocks of four cells before being included in

the descriptor. Objects are detected using a sliding window search over all possible
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scales and image locations, which takes up to 30 seconds depending on the image

size and scale range. Implementations for Graphics Processing Units (GPUs) have

however recently become available and can reduce the processing time to less than

one second.

Liebe et al. [65] developed the Implicit Shape Model (ISM). The method recog-

nised objects using a codebook to map local features to corresponding offsets from

the object centre. To detect objects, local features in the image were detected and

the codebook was used to generate votes for the object location. Although the ap-

proach appears robust, it is not clear how dependent it is on the high resolution

images that were used. The method also requires time in the order of minutes to

process a single image, so is unlikely to be fast enough for real-time tracking.

Tracking Algorithms

Most recent work on multiple target tracking has focused on appearance based meth-

ods, which can be divided into two broad categories.

The first group covers feed-forward systems which use only current and past

observations to estimate the current state. A significant recent publication in this

category is the work of Breitenstein et al. [18]. The method involved applying

particle filter tracking to the continuous likelihood output from a densely applied

object detector such as HOG or ISM.

The second group covers data association based methods which also use future

information to estimate the current state, allowing ambiguities to be more easily

resolved at the cost of increased latency. This involves analysing observations either

by processing an entire video sequence as a batch or by operating on a sliding window

covering a short period of data (e.g. the most recent ten seconds). Most approaches

involve grouping observations into tracks corresponding to individual people by using

an affinity function to measure the likelihood of observations being from the same

track.
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Wu and Nevatia [133] used a method which performed data association on de-

tections but could also use mean-shift tracking when detections were missed. The

correct data associations were based on the similarity of location, size and appear-

ance, and detected trajectories could be grown both forwards and backwards in

time.

Huang and Nevatia [50] performed data association using different methods first

at a low level using information such as the target size and appearance, then at a

mid level where motion information was included, and finally at a high level using

knowledge of the entire scene such as entry and exit points. The approach was ex-

tended by Li et al. [70] by learning a boosted affinity classifier for identifying related

observations. The learning algorithm interleaved the identification of likely tracks

with the optimisation of the affinity classifier to obtain iterative improvements.

Since tracks and genuine detections cannot exist without one another, Leibe et

al. [66] developed a method for identifying both simultaneously by optimising over

pedestrian detections and track likelihoods jointly. This allowed weak detections to

be accepted if there was sufficient support at the trajectory level.

Some alternative approaches work by identifying paths rather than linking up

observations. The approach of Berclaz et al. [9] reasoned about gaps in observations

by modelling the movements of observations as flow in a graph, with constraints to

prevent multiple objects occupying the same space and to ensure that objects could

only enter or exit the scene from particular locations. Stalder et al. [117] started with

a dense space-time volume of detector confidence scores similar to Breitenstein’s.

Various filters were applied to enforce requirements such as geometric consistency

and trajectory smoothness before the final step generated trajectories using a particle

filter.
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Figure 2.4: A randomised tree with depth 4. The chosen branches depend on the
outcomes of different branch tests (Di) and determine the leaf node (Lj) that is
reached. Each leaf node has a histogram representing the amount of data from each
class that reached the leaf.

2.5 Randomised Trees and Ferns

Randomised trees and ferns are used extensively throughout this thesis to classify

images into discrete classes corresponding to different gaze directions. Randomised

fern classifiers are a specialisation of randomised tree classifiers and are used in

chapters 3 and 4, and a variation on standard decision trees is used in chapter 6.

Although randomised trees and ferns are relatively simple, they have a number

of advantages over other popular types of classifier. One of the key advantages is

that randomised trees and ferns easily generalise to work with any number of classes.

Other classifiers such as SVMs require a number of binary classifiers to be trained

to achieve multi-class classification.

A second advantage is that trees and ferns can output a probability distribution

over classes, whereas SVMs and ANNs provide output for each class that is only

expected to be a monotonic function of the probability. Probability distributions

are useful because they are easily integrated into temporal models, which can be

used to overcome classification errors.
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2.5.1 Randomised Trees

Decision tree classifiers are based on tree data structures, which consist of a hierarchy

of branch nodes and leaf nodes, as illustrated in figure 2.4. Branch nodes perform

a test on the input data and use the result to determine which of the child nodes

below it in the hierarchy should be examined next. Eventually a leaf node will be

reached, which contains a histogram representing the probability estimates of the

input data being an instance of each class given the outcomes of the branch tests.

Trees are usually implemented with each branch node having two child nodes, since

this allows a simple and efficient implementation.

To train a tree, a large quantity of labelled training examples are passed down

the tree until they reach a leaf node corresponding to the outcome of the encountered

branches, where they are added to the histogram bin corresponding to their class.

Decision tree classifiers originate from sets of hand-selected rules that were man-

ually interpreted for purposes such as medical diagnosis. Early work such as that

of Breiman et al. [17] developed methods for automating the process. Randomised

trees are a specific type of decision tree where the training process has a random

element to ensure that there is some variation in the structure of the tree each time

it is trained.

2.5.2 Branch Selection

In order to achieve fast lookups with decision trees, it is desirable to make each

branch as informative as possible so that fewer branches are required. To obtain

the minimal mean number of evaluated branches requires branch tests where both

outcomes are equally likely.

An approach that is commonly used for training randomised trees is to choose the

branch tests which result in the greatest information gain for the examples reaching

the branch [14, 68, 3]. Many other approaches have also been tried such as training

an SVM at each branch or using clustering to find a separating hyperplane, however
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it has been shown that the optimal method is problem specific [47].

2.5.3 Forests of Trees

Classification can be performed with a single randomised tree, but greater accuracy

is usually achieved by combining the output from a number of trees, which are collec-

tively called a forest. A single tree cannot be grown indefinitely because eventually

there will be no data left to populate the leaves. Different combinations of branch

tests are more informative for some examples than others, so having multiple trees

increases the chance of informative branch tests being applied to every example.

Forests were simultaneously proposed for randomised trees by both Ho [46] and by

Breiman [15, 16].

Both Ho and Breiman suggested averaging the output distributions across all of

the trees in a forest to provide an improved estimate. If we represent the class using

the random variable c and the information from tree f of n as Df then this amounts

to the following:

P (c|D1 . . . Dn) =
1

n

n∑
f=1

P (c|Df ) (2.1)

The original training methods for decision trees were deterministic, which would

make all of the trees identical and yield no benefit over a single tree. To reduce the

correlation between the estimates from individual trees within a forest, Ho proposed

using a randomly chosen subset or subspace [47] of branch tests to train each tree and

Breiman proposed bootstrap aggregation (shortened to just bagging) in which each

tree is trained with a randomly chosen subset of the training data. A comparison of

both methods [48] has shown that the two approaches result in similar performance.

2.5.4 Randomised Ferns

In their work on randomised trees, Lepetit and Fua observed that the training time

for randomised trees could be significantly reduced if the branch tests were chosen

35



D0
truefal

se

fa
ls
e

D1
true

tru
e

f
al
se

D2

D3 D3

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
tru
e

f
al
se

D2

D3 D3

fa
ls
e

D1
true

tru
e

f
al
se

D2

D3 D3

tru
e

f
al
se

D2

D3

D3

D2

L12 L13 L14 L15

L8 L9 L10 L11

L4 L5 L6 L7

L0 L1 L2 L3

D0

1 0 1 1

D3

D1
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entirely at random, with the only negative effect being a small drop in classification

accuracy [68]. Soon after it was noted that there was nothing to be lost by making

branch tests identical at every level in a randomised tree if they were chosen at

random, which resulted in the development of randomised ferns [94, 131].

Randomised ferns are equivalent to decision trees where the tests for branches

at equal depths are the same. The suggested method for constructing ferns is to

select branch tests at random and then populate the leaf histograms using examples

for which the correct class is already known in the same way as for randomised

trees. The constrained structure of a randomised fern allows the tree structure to

be replaced with a set of tests for which the outcomes specify an index into the leaf

data, as illustrated in figure 2.5. When the leaf index is represented in binary, each

bit corresponds to the result of evaluating one of the individual tests.

The main advantage of randomised ferns over randomised trees comes from the

reduced computational requirements. In a randomised tree, each branch test must

be evaluated before the next branch test can be located in the computer’s memory, so

to reach a leaf at depth d requires d unpredictable memory accesses. Unpredictable

memory accesses usually miss the processor cache so introduce a delay typically

in the order of 100 clock cycles, making them the bottleneck for performance. In

a randomised fern, the same d tests are always applied, so only one unpredictable

memory access is required for the final leaf data. Although the structure and training

process generally result in ferns being less accurate than trees, such an efficient

implementation allows significantly faster training and classification. An additional

advantage of ferns is exploited in chapter 3.

A randomised fern requires only d branch tests to be stored, compared to 2d −

1 for a tree, however the space required for the leaf data is generally larger for

a fern since all 2d possibilities must be stored. This limits the maximum depth

due to the required memory capacity. To overcome this problem, an ensemble of

ferns can be used, with the output of all the ferns being combined to provide an
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improved estimation. An ensemble of n ferns with depth d allows a total of nd

branch tests to be used, but with the need to store only 2dn possible outcomes

rather than the 2dn outcomes that would be required if the tests were all in a single

fern. The disadvantage of using an ensemble of ferns is that the outcomes each

depend on a subset of the branch tests rather than all of them jointly, but this is

usually outweighed by the benefit of being able to use more branch tests than would

otherwise be possible.

Individual randomised ferns can be considered as a type of nearest neighbour

classifier, since the histograms at each leaf consist of all the images that are consid-

ered to be identical given the branch outcomes required to reach that leaf. When

multiple ferns are used, the behaviour differs depending on how the individual esti-

mations are combined.

2.5.5 Forests of Ferns

As with trees, the combined estimates from a forest of ferns is generally used rather

than that of just a single fern, however the approach that was suggested by Ozuysal

differs to that for randomised trees. Ozuysal takes the product of output distribu-

tions, which assumes independence between the estimates from each fern:

P (c|D1 . . . Dn) =

∏n
f=1 P (c|Df )∑

ci

∏n
f=1 P (ci|Df )

(2.2)

Some recent performance tests [93] in the domain of corner matching demonstrate

significantly improved performance of this naive Bayes combination over averaging.

2.6 Datasets

The next four chapters examine algorithms both for estimating the gaze direction

from cropped head regions and for tracking heads in video sequences to provide the

cropped regions. The following sections provide details on the datasets used to test

38



the performance of these algorithms.

2.6.1 Video Datasets

A variety of video datasets are used both for evaluating the accuracy of tracking

algorithms and to test the combined tracking and gaze estimation system. The

most important properties of the video datasets are summarised in table 2.3.

Town Centre Video The Town Centre video covers a pedestrianised town centre

street where approximately 10-30 people are visible at a time, all of whom are

unaware that they are being filmed. Pedestrians frequently occlude one another and

often walk in groups of two or more people. The video was filmed from a first storey

window close to a genuine CCTV installation and includes events such as pigeons

flying in front of the camera and transitions from direct sunlight illumination with

shadows to diffused sunlight. The video was filmed at 1920× 1080 resolution, with

two short clips extracted for evaluation purposes. The first is a short clip lasting five

minutes that was used to test the tracking performance in chapters 4 and 5. All of

the head bounding boxes in the first three minutes of the clip were hand-labelled to

provide a total of 71473 ground truth head regions covering 231 different people. The

five minute video clip and the ground truth data have been made publicly available

to be used by others for comparing performance. The second clip is an extended

22 minute version without ground truth that is used for the attention measurement

system in section 4.4 and for extracting head image dataset C (see section 2.6.2).

A full calibration relative to the ground plane was found using measurements of

markers on the pavement.

i-Lids AB Easy Video The second dataset with ground truth is the i-Lids AB

Easy video, which is a section of genuine security footage that has been released

by the UK Home Office. The video covers a train station platform with relatively

low quality 720× 576 video that has been digitised from an analogue camera. The
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ground truth annotations were full body bounding boxes that were made available

by Stalder [117] and Breitenstein [18], who had previously used them for evaluat-

ing tracking systems, and covered 16 people with a total of 9718 bounding boxes.

The dataset is used for evaluating the tracking accuracy in section 5.3.2. Ground

plane measurements were not available, so an approximate calibration was found

by projecting a ground plane grid with 1.7 metre long height markers and manually

adjusting the calibration parameters until the ground plane and height markers were

aligned with the floor tiles and heights of the pedestrians respectively.

PETS 2007 Video Although the PETS 2007 Video does not have ground truth,

it is used in chapter 5 because it contains a higher density of people than the other

datasets. The video is 720 × 576 resolution and has approximately thirty people

visible at a time, many standing in groups where they are heavily occluded. The

dataset was supplied with the full camera calibration relative to the ground plane.

Atrium Video The Atrium Video was filmed for the specific purpose of evaluating

the attention measurement system in section 4.4. The video covers an indoor atrium

where people frequently walk between doorways but rarely stand still within the

visible area. The dataset is approximately two hours long and is divided into two

halves. In the first half of the video the scene is observed normally, but in the second

half an artificial stimulus was introduced as an attempt to attract the attention of

the people in the scene. The stimulus consisted of a light attached to the wall at

eye level with a short message in print large enough to be read by passing people

without diverting their trajectories. Measurements of ground plane locations were

used to calibrate the camera relative to the ground plane.

Hermes Crosswalk Video The Hermes Crosswalk video sequence is a staged

clip involving three actors which was chosen as a third clip for testing the attention

measurement system in section 4.4. During the clip, two of the actors watch a car
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as it passes, providing a well defined focus of attention. An approximate calibration

was found in the same way as for the i-Lids video by manually fitting a ground plane

grid with height markers. The video has a resolution of 1392 × 1040 and covers a

small area of ground, so provides high resolution images of the actors.

Transport Terminal Video The final video was filmed from a first storey balcony

in an open space at a busy transport terminal. Most of the pedestrians are standing

still, with the others crossing the scene from one side to the other. The video is

1920×1080 resolution, has no ground truth, and was calibrated using measurements

of markers on the ground. The automatic tracking algorithm from chapter 5 is used

in chapter 6 to extract head image dataset E from the video sequence.

2.6.2 Head Image Datasets

This section describes the head image datasets that were used to test the perfor-

mance of the gaze direction estimation algorithms. Three of datasets were extracted

from still images and video sequences using manually annotated head bounding

boxes and the other three were extracted from the video datasets using automatic

tracking. All of the datasets consist of cropped images which are stored in sequences

corresponding to each of the people in a scene, where those from still images are

simply sequences of length 1. The frame timestamps are stored with the images, as

well additional information for some datasets. Ground truth labels were assigned to

some or all of the images in the datasets by manually aligning an approximate 3D

head model with the image and recording the resulting pan angle. The head image

datasets have been given a label from A-F and the most important details for all six

are summarised in table 2.4.

Dataset A The first dataset was sourced from a combination of images from

the INRIA Person Dataset [29] and still photos which were obtained through web

searches for crowd images. The head bounding boxes were hand labelled and used to
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extract the individual head images. Unless otherwise stated, the extracted images

include a border around the annotated head region so that they cover a region

1.2 times the width and height of the head bounding box. The original images were

retained to allow head images to be extracted with larger or smaller borders, or with

scale or location perturbations. Dataset A covers a wide range of appearances, so it

used as the main dataset for the evaluation of gaze direction classifiers in chapter 4

and also for a baseline comparison in chapter 6.

Dataset B The head images in dataset B were hand labelled as with dataset A,

but in a variety of surveillance dataset videos rather than still photos. Seven short

video sequences from the Hermes [41] and Terrascope [53] datasets were selected

to cover different lighting conditions and actors in both indoor and outdoor scenes.

The resulting head image sequences are used to test the gaze direction classifiers in

chapter 3 and in chapter 4 to compare the performance of classifiers without the

inaccuracies of automatic tracking.

Dataset C Dataset C was obtained by applying the Kalman filter based track-

ing algorithm described in chapter 4 to the Town Centre video (see section 2.6.1).

The resulting dataset consists of almost half a million images covering more than

two thousand people who were each observed for an average of approximately ten

seconds. In contrast to datasets A and B, the extracted images include cases where

the tracker performs suboptimally, resulting in sequences of misaligned heads and

some without heads at all. Every one hundredth image was hand labelled with a

ground truth gaze direction, but images where less than half of the head was within

the extracted region were marked as invalid and not used in the evaluations. The

dataset is used for the evaluation of gaze direction classifiers in chapter 4 and in

chapter 6 in combination with the tracker output for both learning and evaluation.
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Dataset D The Kalman filter based tracking algorithm of chapter 4 was also

applied to the i-Lids ABTRA104a01 video sequence to extract the head image se-

quences for dataset D. The video is from the same train station scene as the i-Lids

AB Easy video (see section 2.6.1), but contains more people. The dataset contains

a poor distribution of gaze directions, but the dataset was included to allow a com-

parison in chapter 4 with results from Orozco’s system [91], which provided results

from this video sequence.

Dataset E A second large dataset of more than six hundred thousand head images

was collected from the Transport Terminal video (see section 2.6.1). The majority

of images in this dataset were from people who were standing still, in contrast to

dataset C which consists of images mostly from walking people. The images were

extracted using the tracking system described in chapter 5, which is able to track a

higher proportion of the stationary people than the one from chapter 4. The dataset

includes the ground plane locations and velocities and is used for evaluating the gaze

estimation system in chapter 6.

Dataset F The final dataset consists of still images that were manually cropped

from web image searches for surveillance footage. The resulting images were mostly

frames extracted from surveillance video, so were smaller and of lower clarity than

those from dataset A. The dataset was primarily intended for training the gaze

direction estimation algorithm in chapter 3, so the images had their pixel colours

clustered into six groups, ignoring position information. The image regions covered

by the six colour groups were manually assigned a label of either hair, skin or

background depending the image region that they mostly covered. In chapter 3, the

objective is to work with low resolution images so the images in dataset F were

resized to 10 pixels square before use. The images were used at their full resolution

for the manual annotation of ground truth and for the experiments in section 4.3.5

which use the dataset to compare different algorithms.
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2.7 Conclusion

A considerable amount of past research has been directed at the problem of estimat-

ing head poses in low resolution video, however in almost all cases the conditions

under which the systems have been developed are unrealistic in the context of visual

surveillance. Of the 35 publications listed in Table 2.1, only eleven used images

smaller than 30 pixels square, just ten attempted to measure the head around the

full 360◦ range, and only four had evidence of proper separation between their testing

and training datasets. This is in agreement with the conclusions of an independent

review [83], where it was observed that no existing gaze estimation systems are

suitable for practical use.

Systems for coarse gaze estimation have been developed for many different ap-

plications, however in most cases few people appear at a time. This is reflected in

the methods used for tracking, which often rely on background subtraction, a tech-

nique which becomes increasingly unreliable with more people present. The most

promising methods for head tracking use appearance-based detection.
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CHAPTER3

Low Resolution Colour Invariant

Gaze Classification

We begin by attempting to estimate gaze directions for particularly low

resolution images where the heads are approximately ten pixels in diame-

ter. A novel approach based on randomised ferns is used to classify head

images into classes according to their gaze direction without making any

assumptions about skin, hair and background colours. Standard branch

tests are replaced by predicates testing for the presence of abstract la-

bels, which are inferred as part of the classification process. The research

presented in this chapter was published at BMVC 2008.

47



Figure 3.1: The eight head pose classes into which head images were classified based
on the head pan angle. The angle was measured about the y-axis of the image and
for heads with rotations about other axes pan was considered the first applied.

3.1 Introduction

It is often desirable for an automatic surveillance system to work with images where

people appear as small as possible, since this allows each camera to monitor the

largest area. This preference is the motivation behind the research described in this

chapter.

Problem Statement: The problem addressed in this chapter is that of taking a

single head image or sequence of head images as input and processing the images to

produce estimates of the direction in which the person is facing. The source images

are assumed to be already cropped to a region containing only the head with no

border, and we would like the system to be capable of operating on images where

the heads are as little as ten pixels in diameter.

The size of ten pixels was chosen because experimental evidence [123] exists

showing that humans are capable of distinguishing faces from non-faces in images

this small without seeing any of the surrounding image for context. In this chapter

it is assumed that the bounding boxes around the heads in the video sequences are

already known so the focus is on the problem of estimating the coarse gaze direction,

however methods for automatically finding the bounding boxes are developed in

chapters 4 and 5. The approach is based around a classifier which attempts to

allocated each sample head image to one of eight discrete classes, each representing
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Figure 3.2: Samples of head images that were used to test head pose estimations.
The hair colours of some individuals are the same as the skin colours of others which
demonstrates the ineffectiveness of skin separation based on a fixed colour model.

a 45◦ range of gaze directions, which are illustrated in figure 3.1. The classification

is based on the pan angle of the head, which is considered the be the rotation about

the vertical axis in the image, however the classes are assumed to include images

with rotations about the other axes. A particular side effect of the approach is to

label every pixel in a sample head image as either background, hair or skin.

Some examples of cropped head images from the dataset that is used for training

the classifier in this chapter (dataset F in section 2.6.2) are shown in figure 3.2. In

these images the most important cues for the gaze direction come from the regions

of the image that can be identified as hair and skin, since facial features such as

the mouth and eyes usually cannot be seen. Many previous approaches to gaze

estimation have relied on the identification of hair and skin using prior knowledge of

what the colour distributions will be. In some systems such as Robertson and Reid’s

[105], the colour histograms were manually defined for each video sequence, which

would be impractical for a genuine installation. Other approaches have attempted

to build generic models of skin colours using one or more other images or videos

that do not include the test dataset [100, 4, 120, 25]. These rely on the assumption
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that the distribution of skin colours across all images is separable from that of the

hair or background distributions, which figure 3.2 shows to be incorrect. There is

an overlap between potential skin and hair colours so identification based on colour

alone will often fail. The approach that we take attempts to resolve this issue

by taking inspiration from the work of Ramanan et al. [101], in which a generic

person model bootstrapped the online learning of a person-specific colour model for

tracking.

This chapter describes a method for gaze estimation which is based on the iden-

tification of hair and skin regions, but works without making any prior assumptions

about what the colour distributions should be. The approach makes use of ran-

domised fern classifiers, but with a layer of abstraction introduced so that the ferns

are used to estimate the probability distribution over the eight direction classes for

an image where every pixel has an abstract label, rather than from the observed im-

age directly. During the inference process, the gaze classification and abstract labels

are both inferred simultaneously. This abstraction allows the system to cope with a

wide variety of different skin and hair colours and also makes it largely invariant to

different lighting conditions.

The output of the classifier is a probability distribution over the eight discrete

direction classes, but as a side effect each pixel is also assigned one of the hair, skin

or background labels. In addition to gaze direction estimates, the system is also able

to learn the colour distributions for the three label types online for each individual

person that is observed. These colour models are used to improve the accuracy of

subsequent gaze estimates for sequences of head images that have been extracted

from video.
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3.2 Randomised Fern Structure

In a standard decision tree or fern, the outcomes of the tests at all of the branches

are conditionally independent given the data upon which the tests are based. The

proposed classifier is motivated by the idea that the branch tests could also depend

on latent variables which are not known in advance, but which can be inferred

during the classification process. In this case, the latent variable is a hypothesis

which specifies which of the three logical labels background, hair or skin should be

applied to different image regions.

To keep the labelling hypothesis reasonably simple, the pixels in each image

were divided into six segments by using k-means clustering to find groups of similarly

coloured pixels. The term segment will be used to refer to the set of image pixels that

were assigned to the same colour cluster, which may consist of multiple disconnected

components. Six segments were used to ensure that the hair and skin were separated

in cases where lighting conditions caused their colour distributions to be multimodal.

In the remainder of this chapter, the term hypothesis will be used to describe a set

of constraints on which of the three labels could be correct for each of the six

colour segments. A hypothesis can be uninformative, such as the empty hypothesis

which allows any segment to have any label, or it could contain constraints on some

segments but not others. A hypothesis that allows only one possible label for each

segment will be referred to as a complete hypothesis, and a hypothesis that does

not allow any label for a segment is considered impossible because it represents

contradictory assumptions.

The branch tests in the randomised ferns each propose that the segment corre-

sponding to a randomly chosen image location has a particular label. The outcome

of the branch test is determined by truth of the proposition, which is tested using

the image and the current hypothesis. These tests are equivalent to the predicates

that are used in first order logic, and in this context the hypothesis can be seen as

providing a mapping which unifies the segmented image with one of the examples

51



represented by the fern.

Unlike ordinary decision trees and ferns, a single image can reach a number of

different leaf nodes, albeit under different hypotheses. There are two different ways

in which these leaf nodes can be found; both produce the same results and each

can be more efficient than the other depending on the size of the ferns and the

complexity of the hypothesis.

The first method that was tried involves working with a set of hypotheses, ini-

tially containing just one empty hypothesis, and carrying out the predicate tests

required by the fern one by one. When each test is applied, every hypothesis in the

set is processed with two possible outcomes depending on how the segment corre-

sponding to the tested pixel is constrained by the hypothesis. The first possibility

is that the hypothesis doesn’t constrain the segment enough to determine whether

the outcome of the test should be true or false. Since both are possible, the hy-

pothesis is replaced by two new hypotheses, one of which assumes that the test

outcome should be true and the other assuming that the outcome should be false.

Both hypotheses are equivalent to the old hypothesis with the constraints updated

to reflect the implication of the corresponding assumption. The second possibility is

that the hypothesis already includes enough constraints to determines the outcome

of the predicate test, in which case it remains in the set unchanged. This process

is illustrated in figure 3.3 for a simple fern containing four tests and with just three

segments. The hierarchy shows how the set of possible hypotheses is updated after

each test, with the constraints on the labels for each segment represented by the

colour as indicated by the Venn diagram. Note that the diagram shows how the set

of hypotheses is expanded and not a decision tree; the same sequence of tests are

still applied as with a standard fern. When the first test is applied, both outcomes

are possible so the hypothesis is split into two new hypotheses. The second test is

applied to the same segment as the first, so for the hypothesis on the right would

represent a contradiction if the outcome were true because the same segment cannot
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be both skin and hair. The result is that the outcome is already determined, and

the portion of the decision space represented by the red crosses cannot be reached

by the example image.

The second approach is based in the observation that with six segments and

three labels a maximum of 729 hypotheses can exist, which occurs when all hy-

potheses are complete. By simply evaluating every possibility in turn, the branch

outcomes and leaf nodes corresponding to possible hypotheses can be identified more

efficiently. For the particular problem in this chapter this second approach of ex-

haustive searching was used because it allows a more efficient implementation. The

hypothesis splitting approach is likely to be more efficient for problems where the

domain of the hypotheses is considerably larger, where it can be expected that few

hypotheses will be complete after all of the tests in the fern have been applied.

Performing classification based on a logical representation has a number of ad-

vantages over a classifying based on directly measurable properties such as pixel

brightness, the biggest of which is colour invariance. There is enough variation

of hair and skin colours between people and under different lighting conditions to

prevent them from being accurately distinguished by a simple comparison of pixel

colours, so the branch tests in a standard fern do not allow as much of the important

structural information to be tested as those in the abstracted equivalent. A second

advantage is that labelled images provide a higher ratio of useful information to

noise than the observed images, which helps to prevent over-fitting.

3.2.1 Training

The randomised fern classifiers in this chapter were trained using dataset F (see

section 2.6.2), which consists of approximately 1000 head images that were collected

from a wide variety of digital photos obtained from web searches. The images were

cropped to include only the head region, resized to 10 pixels square, and manually

assigned to one of the eight classes based on the head orientation. Each of the six
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Figure 3.3: An example showing a simplified case where just three segments are
labelled by a small predicate fern. The hierarchy shows how the set of hypotheses
grows as each test is applied. Note that the same sequence of tests are still applied
to every image as with standard ferns. Here the hypotheses are represented as the
segmented image with the segments coloured according to the set of possible labels
that the segment could have, as indicated by the Venn diagram. Large red crosses
show branches that represent contradictions for this particular image. For larger
ferns, a much smaller fraction of the leaf nodes would be reached because many
more contradictions would occur.
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Figure 3.4: Sample images from the training data (top) with the 6 colour groups
identified using k-means clustering (middle) and the hand labelled images (bottom).
In the labelled images, dark brown represents hair, beige represents skin and black
represents background.

segments obtained using k-means clustering were manually assigned one of the hair,

skin or background labels. Examples from the training data and the corresponding

segmentations and manually assigned labels are shown in figure 3.4.

In addition to a histogram of correctly labelled images, a second set of histograms

were populated at each leaf using the training images under every possible incorrect

labelling hypothesis. This second set of histograms represents the probability that

an image reaching the leaf would be allocated to each class given that it has been

labelled with an incorrect hypothesis.

3.2.2 Classification

Having identified the leaf nodes in the fern that can be reached by an image under

all valid hypotheses, the next stage is to estimate the joint probability distribution

P (h, c) over hypotheses h and direction classes c. The sets of all complete hypotheses

and all direction classes will be represented by H and C, so h ∈ H and c ∈ C, and

the outcomes of the branches in fern f from a total of n when the segmented image
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is labelled using hypothesis h will be represented by dfh.

Each leaf node has a corresponding histogram representing the fraction of the

total training images in each class that reached the leaf, which is used to estimate

the probability P (dfh|h) that any correctly labelled image will reach that leaf. Un-

fortunately, incorrectly labelled images are more likely to reach some leaf nodes than

others due to structural information being lost when multiple segments are given

the same label. Images with fewer boundaries between differently labelled regions

contain less distinctive information, so are more likely to reach the same leaf node.

An extreme example would be a hypothesis which labels all segments as background;

under this hypothesis all images would reach the same leaf. To prevent bias towards

these degenerate hypotheses, it is important to also take into account the probability

P (dfh|h) of a leaf being reached by incorrectly labelled images.

The joint probability given the branch outcomes for a single fern can be cal-

culated by expanding Bayes’ formula with the assumption that P (h) and P (c) are

independent:

P (h, c|dfh) =
P (dfh|h, c)P (c)P (h)∑

ci∈C P (dfh|h, ci)P (ci)P (h) + P (dfh|h, ci)P (ci)P (h)
(3.1)

The values of the conditional probabilities P (dfh|h, ci) and P (dfh|h, ci) are represented

in the histograms from the leaf corresponding to dfh.

As mentioned in section 2.5, the probability distributions from randomised ferns

are usually multiplied to provide the overall combined distribution under the as-

sumption that each fern will provide an independent estimate. In our case a single

labelled image contains a maximum of log2 3100 (≈ 158) bits of information whereas

the ensemble of ferns makes a total of 320 binary tests, so there is likely to be a

large amount of mutual information between the estimations from the ferns. This

mutual information has the potential to cause the product of the estimations from

the ferns to be severely biased. Combining the estimations by taking the mean over

56



Crop and scale
to 10£10 pixels

Identify Colour
Segments

Find most likely
label hypothesis

Update colour
histograms

+

+

+

Calculate
label priors

Find posterior
hypothesis

Update hidden
Markov model

Figure 3.5: An overview of the classification process for a head image in a video
sequence. The example image is incorrectly classified using the maximum likelihood
hypothesis, but correctly classified when the learned colour distributions are used to
find the best posterior hypothesis.

all ferns in the same way that one normally would for a forest of randomised trees

avoids this problem. Marginalising and taking the mean over all n ferns provides an

estimate of the probability that each hypothesis and class is correct for the image:

P (h|d1
h . . . d

n
h) =

1

n

n∑
f=1

∑
ci∈C

P (h, ci|dfh) (3.2)

P (c|D1 . . . Dn) =
1

n

n∑
f=1

∑
h∈H

P (h, c|dfh) (3.3)

In these equations Df represents the set all possible dfh for fern f .

This method for combining estimations is a direct transfer of the method for

standard randomised forests to our predicate ferns and is the method that was used

when the work was first published. Many other ways for combining the fern estimates

were subsequently tested; these are described in section 3.5.
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3.3 Classification in Video

When classifying a series of head images of the same person in video, the information

that is learned from one frame can be combined with information that has been

learnt from previous frames. An overview of the resulting classification process for

each head image in a video sequence is shown in figure 3.5. The image is first

processed by the ferns to obtain a maximum likelihood hypothesis, and the pixels

colours covered by each of the labels in the hypotheses are added to cumulative

histograms for those labels. The cumulative histograms are then used to calculate

prior probabilities for each segment having each label based on the similarity to the

previously observed colours for the labels. A new posterior hypothesis is then found,

from which the distribution over classes is smoothed using a Hidden Markov Model

(HMM) to provide the final class probabilities. The following two sections describe

the colour model and HMM in more detail.

3.3.1 Learning Colour Distributions

The segment structure alone provides enough information to classify the head im-

age successfully in most cases, however the classification accuracy can be improved

by learning the colours represented by the labelled image segments. Although no

assumptions are made about the hair and skin colours of the surveillance subject,

it is assumed that they will stay reasonably constant while they are being observed.

Small changes in the colour distributions might result from changes in illumination

but are acceptable provided that the colour distributions do not overlap significantly.

The colour distributions for the labels are learnt by taking the hypothesis which

maximises the probability in equation 3.2:

hmax = argmax
h

P (h|d1
h . . . d

n
h) (3.4)

In every frame, the pixel colours from each of the segments in the head image are
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added to the histograms corresponding to their labels in hmax. The resulting colour

histograms Y = {Yhair, Yskin, Ybackground} that are built up over all frames preceding

the current one are used to generate a prior P (h|Y ) over hypotheses for the current

frame. The prior is calculated from the probability of each pixel colour q in each

segment s occurring given the accumulated colour histograms for the label that the

hypothesis assigns to it. The occurrence probabilities are averaged over the pixels in

each segment before the product is taken over all s in the set S of all six segments:

P (h|Y ) ∝
∏
s∈S

∑
q∈s

P (q|Yh(s)) (3.5)

In the above equation, the notation Yh(s) is used to represent the colour histogram

corresponding to the label that h provides for segment s. The pixel colour proba-

bilities P (q|Yh(s)) are calculated using the distribution represented by the histogram

(i.e. as a single density estimate from a multinomial distribution). Equation 3.1 is

then adjusted to provide an improved estimation by taking into account the colour

histograms Y :

P (h, c|dfh, Y ) =
P (dfh|h, c)P (c)P (h|Y )∑

ci∈C P (dfh|h, ci)P (ci)P (h|Y ) + P (dfh|h, ci)P (ci)P (h|Y )
(3.6)

Equations 3.2 and 3.3 are updated similarly to give improved estimates of the class

and hypothesis probabilities.

The use of colour as a temporal constraint allows ambiguities to be resolved in

situations where the segment structure alone does not provide enough information.

An example of this is shown in figure 3.5 in which the most likely hypothesis for

the segmented image gives an entirely plausible initial labelling which causes the

image to be misclassified. When the colour priors are used, the improved posterior

hypothesis provides more accurate labels which result in correct classification.

59



Figure 3.6: The HMM used to model gaze directions has eight states corresponding
to the eight head direction classes. The state can change to any other state in one
update, though large changes are considerably less likely.

3.3.2 Hidden Markov Model Filtering

The pose of a head at any time provides information relating to the pose shortly

after due to the physical constraints of human head motion. This information is

exploited through the use of a Hidden Markov Model (HMM) [107] to filter the head

pose estimations.

Hidden Markov Models are used to model processes which transition between

discrete states at regular time intervals, but for which the state cannot be directly

measured. The probability distribution over states is stored and updated at regular

time intervals when observations are made. Although the fern estimates for individ-

ual frames are often sufficient to estimate the current state of the system, the use of

a HMM allows them to be filtered by using past observations to make estimations

more consistent. HMMs can also be used to smooth data by taking into account

both past and future observations when they are available, but due to the real-time

requirements only filtering is used in this work.

Each of the eight head pose classes is modelled as an individual state in a HMM

where any transition between states is possible, as shown in figure 3.6. Let ct repre-

sent the distribution over direction classes andDt represent the informationD1. . . Dn

from the ferns at time t. The probability of transitioning from state i to state j is
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estimated as a Gaussian function of the smallest positive angle aij between them:

P (ct+1 =j|ct= i) ∝ e−
a2ij

2σ2 (3.7)

The smoothed distribution over classes at time t + 1 is then estimated recursively

as the product of the predicted and observed distributions:

P (ct+1 =j|D0. . .Dt+1) ∝ P (ct+1|Dt+1)
∑
i∈C

P (ct+1 =j|ct= i)P (ct= i|D0. . .Dt) (3.8)

This can be written more compactly using matrix notation if the vector st represents

the probability distribution of ct over the discrete class states and the observation

matrix Ot is a diagonal matrix with P (ct|Dt) as the ith diagonal element:

st+1 ∝ Ot+1T
Tst (3.9)

where

Tij = P (ct=j|ct−1 = i) (3.10)

This model is however based on the assumption that the observations are all made

at equal intervals which is often insufficient. Cameras operate at different frame

rates and one cannot guarantee that every frame will be processed in a real-time

system, so to cope with unequal observation intervals equation 3.9 was modified to

allow an arbitrary observation interval ∆t:

st+∆t ∝ Ot+∆t(T
T)∆tst (3.11)

Since the transition probabilities are modelled using a Gaussian distribution, T∆t

can be calculated simply by scaling the variance σ2 in equation 3.7 according to the

time interval:

σ2 = k∆t (3.12)
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where k is a constant representing the standard deviation of the angular velocity

over one second. The use of this model allows filtering to be performed when frames

are missed and ensures that the constant k need not be adjusted for cameras with

different frame rates.

In the absence of any empirical measurement, the value of 0.15◦ per millisecond

was used for the head motion standard deviation.

3.4 Branch Decision Selection

The branch tests that are used in the randomised ferns determine how images are

grouped together, so the method by which they are chosen is important. As men-

tioned in section 2.5.2, there are many ways to select branches, but many do not work

well with more than two classes. One particular method, which involves maximis-

ing the information gained from each branch, is frequently used and has a natural

generalisation to any number of classes. If a branch splits the training examples

with distribution S at that node into K subsets with class distributions Sk, then

the expected information gain from knowing the outcome of the branch is defined

by the difference in entropy:

∆I = H(S)−
K∑
k=1

|Sk|
|S|

H(Sk) (3.13)

The entropy H(Sk) is calculated from the class probabilities p(c) defined by Sk:

H(Sk) = −
C∑
c=1

P (c)log2P (c) (3.14)

Although this method for branch selection was intended for training trees, we apply

the same principle to ferns by using the entropy over the distributions at all nodes

for which the branch is chosen.

To encourage variation between different ferns, the branch tests were chosen
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using the random subspace method by forcing each branch to choose between a

small number of tests.

3.5 Combining Estimations

So far only one simple method for combining the estimations from each fern and

hypothesis has been proposed. A number of alternative approaches were also tested;

these were motivated by two different observations. The first was that the mutual in-

formation between the ferns was sufficiently large to introduce bias when estimations

were combined using a naive Bayes approach, but small enough so that averaging

did not take advantage of the available information. The application of Chow-Liu

trees was tested in an attempt to address this issue. The second observation was

that the consistency of the labelling hypothesis across all ferns was not enforced by

equation 3.3.

3.5.1 Chow-Liu Trees

In section 3.2.2 the combination of fern outputs by taking the mean was justified by

the high probability of mutual information between ferns. Each fern uses a subset

of the information in the head image, but often the same branch test is used in

more than one fern. Even if there is no overlap between the pixels tested by two

ferns it is still likely that they will be correlated because close pixels tend to have

similar colours. Ideally, one would learn the full joint distribution and calculate

the combined estimation using a series of conditional probabilities to prevent the

combined estimation from being biased by the mutual information. This would

require equation 3.3 to be replaced by a conjunction of conditional probabilities:

P (c|D1 . . . Dn) ∝ P (c)P (D1|c)P (D2|D1, c) . . . P (Dn|D1 . . . Dn−1, c) (3.15)
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The problem is that to use this method would require an unfeasibly large amount

of training data to learn the values for the higher order conditional probabilities.

Chow-Liu trees provide a mid-point between the Naive Bayes estimation and the

estimation using the full joint distribution by making a second order approximation:

P (c|D1 . . . Dn) ∝ P (c)P (D1|c)P (D2|D1, c) . . . P (Dn|Dn−1, c) (3.16)

This type of classifier is known as a Tree Augmented Naive Bayes (TAN) classifier

and details of how the terms are calculated can be found in the original paper

by Friedman et al. [33]. The approximation considers each random variable to be

dependent on just one other random variable, however the choice of the other random

variable has a significant effect on the performance. In their paper Chow and Liu

[27] propose the optimal solution to be that which chooses dependent variables to

be those with the largest amount of mutual information. Mutual information is a

measure of how well the values of two random variables can be predicted from one

another:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(3.17)

Chow and Liu suggested a method for maximising the mutual information which

involves constructing a fully connected graph where vertices represent random vari-

ables and edges represent mutual information between variables. An example of the

mutual information matrix and spanning tree for an forest of ten ferns is shown

in figure 3.7. The optimal second order approximation is the spanning tree which

maximises the edge weights. The maximal spanning tree was found using Kruskal’s

algorithm, which simply involves repeatedly adding the maximal edge that would

not form a cycle to the tree, repeating until all vertices are connected.

Due to the large domain of the branch outcomes dfh, the mutual information was

approximated by that of the corresponding leaf histograms to minimise the amount

of training data that was required.
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Figure 3.7: The mutual information matrix (left) for an example with ten ferns.
The two graphs represent the mutual information between ferns (middle) and the
corresponding Chow-Liu tree (right). The mutual information matrix and graph
share the same scale, which is measured in bits.

3.5.2 Combination Methods

A total of seven different methods for combining the probabilities across ferns and

hypotheses were tested.

Method 1: Simple Averaging A minor modification of the standard method

for aggregating results from randomised trees:

P (c|D1 . . . Dn) =
1

n

n∑
f=1

∑
h∈H

P (h, c|dfh) (3.18)

Method 2: Voting In other classifiers such as multi-class SVMs, voting is often

used to combine multiple estimations. Although it is not directly based on any prob-

abilistic model, voting is useful as a comparison because it is robust to monotonic

transformations of the class distributions.

P (c|D1 . . . Dn) ∝
n∑
f=1

δc,cmax (3.19)

where

cmax = argmax
c

∑
h∈H

P (h, c|dfh)
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Here δi,j represents the Kronecker delta, which is 0 except for when i = j in which

case it has the value 1.

Method 3: Naive Bayes Another simple method is the Naive Bayes classifier,

which has been previously used to combine estimations from randomised ferns. This

approach assumes independence between the estimates from each tree:

P (c|D1 . . . Dn) ∝
n∏
f=1

∑
h∈H

P (h, c|dfh) (3.20)

Method 4: Chow-Liu Tree Combination The next method uses Chow-Liu

trees to model single dependencies between observations as a TAN classifier:

P (c|D1 . . . Dn) ∝

(∑
h∈H

P (h, c)

)(∑
h∈H

P (d1
h|h, c)

)
n∏
i=2

∑
h∈H

P (dih|d
Φ(i)
h , h, c) (3.21)

In this equation Φ(i) represents the parent of observation i in the learned Chow-Liu

tree and fern 1 is assumed to be at the top of the tree.

These first four methods marginalise over hypotheses before combining across

ferns. Although this is analogous to the method by which estimates are combined

across standard trees, our predicate trees can take advantage of the labelling hy-

pothesis to ensure that the ferns produce a consistent labelling of the image across

all of the ferns.

Method 5: Consistent Averaging The standard averaging method in equation

3.18 results in the class distributions from each fern being weighted according to

the individual hypothesis probability from that fern. An alternative is to assume

independence between the ability of a fern to estimate the class and the hypothesis

probabilities for an image. Under this assumption, both are separated before being
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aggregated across ferns and then combined again:

P (c|D1 . . . Dn) ∝
∑
h∈H

(
n∑
f=1

P (c|h, dfh)

)(
n∑
f=1

P (h|dfh)

)
(3.22)

where

P (h|dfh) =
∑
c∈C

P (h, c|dfh)

and

P (c|h, dfh) =
P (h, c|dfh)
P (h|dfh)

Method 6: Consistent Naive Bayes For the Naive Bayes classifier, reversing

the sum and product enforces the consistency of the hypothesis across ferns:

P (c|D1 . . . Dn) ∝
∑
h∈H

n∏
f=1

P (h, c|dfh) (3.23)

Method 7: Consistent Chow-Liu The hypothesis consistency is also enforced

for the Chow-Liu tree approach by swapping the sum and product:

P (c|D1 . . . Dn) ∝
∑
h∈H

P (h, c)P (d1
h|h, c)

n∏
i=2

P (dih|d
Φ(i)
h , h, c) (3.24)

3.6 Evaluation

The method was evaluated by training classifiers using head image dataset F and

measuring the estimated gaze direction accuracy on head image dataset B, which

consists of a total of 9260 head images from a set of videos including sequences

from the Hermes and Terrascope datasets [41, 53]. The test videos covered a wide

variety of different lighting conditions and included images from sixteen actors with

different hair and skin colours, none of whom appeared in any of the training data.

Before evaluation, the head images from the dataset were scaled to 10 pixels square

to simulate low resolution video. Sample frames from the videos are shown in figure
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Figure 3.8: Sample frames from three video sequences with estimated head pose
angles annotated. Although these frames are shown in high resolution, the head
images were scaled to ten pixels square before classification. In the bottom sequence,
the actor on the right has only hair visible for the majority of the video which
prevents the colour distributions from being learnt correctly and results in large
errors.
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Figure 3.9: A graph demonstrating the calculation of a probability density estimate
through the application of a Gaussian Parzen window to the discrete class proba-
bilities (top) and the corresponding class probability histogram (bottom) with the
Gaussian located at the point where the convolution gave the largest response.

3.8. Ground truth for each head image was hand labelled using high resolution

frames, so the angular errors calculated using it are likely to be overestimates due

to human error.

In past work on gaze direction classification, the two most popular performance

measures have been the percentage of images for which the correct class was es-

timated and the Mean Absolute Angular Error (MAAE). The MAAE was chosen

for use because it does not depend on the number of classes and also represents a

preference for incorrect classes to be close to the correct class, which is particularly

important if test images represent directions that are close to a class boundary. The

MAAE results in this section are the mean of ten repetitions for each experiment.

The use of only eight classes results in the pan angle estimations being severely

quantised, so a more accurate pan angle estimation was found by taking a Parzen

window density estimate across the eight classes, as illustrated in figure 3.9. The
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Figure 3.10: Graphs showing the effect of varying the number of choices per branch
on the estimation accuracy. The values plotted are the mean of ten repetitions of
each experiment. The graph on the right suggests that the MAAE (measured in
degrees) is lowest when a choice of between four and six different tests is allowed for
each branch.

Parzen window kernel was a normal distribution with a 45◦ standard deviation and

the window was wrapped around the estimated distribution for 180◦ on either side

of the centre, by which point the density was negligible.

A number of different experiments were performed to test the effect of different

parameters on the classification accuracy. Unless otherwise stated, experiments were

performed using twenty ferns with sixteen branches each, branch tests were selected

entirely at random, and fern estimates were combined by taking the mean (method

1). Temporal information from the colour histogram learning and the HMM were

also used.

Maximal Information Gain Branch Selection

Some experiments were performed to compare the performance of the ferns with

branches selected randomly and using the MIG (Maximal Information Gain) method.

A choice of between zero (no choice) and ten different branch tests was allowed for

each branch during training. The results plotted in figure 3.10 show that the accu-

racy is very sensitive to the number of choices that were allowed, with the optimal

being between four and six per branch. The reduction in performance with more
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Figure 3.11: Classification accuracy resulting from each of the seven methods for
combining fern estimates. Values plotted are the mean of ten repetitions. The
standard deviation of the mean in most cases is less than one degree.

choices suggests that the branch tests in the ferns become too similar.

Combination Methods

The performance from each of the seven different methods for combining fern es-

timates was tested for varying numbers of ferns, which were trained separately for

every experiment. The results from repeating each experiment ten times are shown

in figure 3.11. The methods all perform similarly and the random noise in the es-

timates do not allow any conclusive judgement on the best method, however the

consistent Naive Bayes approach appears to perform slightly better.

A surprising result is that although the simple voting approach performs the

worst with fewer than ten ferns, there does not appear to be a significant difference

to the other combination methods with more than ten ferns. This suggests that the

error models used by the other approaches become less important with more ferns.
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Figure 3.12: A sample from the test used to measure human performance.

Human Performance Comparison

People are capable of identifying frontal face views in very low resolution images but

non-frontal views tend to be less distinctive and in many cases people find the iden-

tification of the head pose challenging. To provide a comparison with human perfor-

mance, twelve people were asked to estimate the pan angle of every one-hundredth

head image in the same video sequences that were used to test the classifier. To en-

sure a fair comparison, the head images from the same actors were grouped to allow

the test subjects to infer the hair and skin colours. The head images were shown

at four different sizes since some images were easier to interpret when enlarged and

others when shrunk due to the false edges introduced by pixellation. A diagram was

provided to allow angles to be entered by clicking at the desired angle to prevent

errors due to estimated angles being incorrectly converted to numerical form (figure

3.12).

The combined results showed that people are capable of estimating the head

pose of the images in the test sequences with a mean absolute angular error of

26.6 degrees. Although the ability of people to identify head pose is fairly uniform,

performance is dependent on the amount of useful information in the images, so the

mean human error provides a useful measure for comparing the difficulty of different

data sets. The level of human error represents the amount of ambiguity in the test

data as well as the error in ground truth labelling.
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Figure 3.13: Graphs showing the effects of random translational and scale errors on
the accuracy of the head pose estimation. Errors were introduced with a Gaussian
distribution and resulted in the head region being translated or scaled along both
axes. The classifier performs well when the size of the head region is incorrect but
performance rapidly diminishes as translational errors are introduced.
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Figure 3.14: The fraction of head images for which the randomised ferns estimated
the greatest probability at each pan location.
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Translation and Scale Errors

The experiments in this chapter test performance using a dataset with hand labelled

head regions (dataset B), which in most cases are accurate bounding boxes, however

in a real system this is unlikely to be the case. Some experiments were performed

to test how both translation and scale errors in the head regions from the dataset

would affect the classification accuracy, the results of which are shown in figure 3.13.

The experiments were conducted by introducing Gaussian error into each of the

bounding box position and the scale of the bounding box, with varying magnitudes

of error. Both cause a reduction in the classifier performance, with the translation

error having the larger impact.

Since both translation and scale errors result in a significant performance reduc-

tion, a further experiment was performed to determine whether the ferns could also

be used to distinguish between head and non-head images and therefore be used to

help with localising the precise head region. The hand labelled head regions were

translated in the horizontal direction by a distance between 0 and 0.6 times the head

width. At each location, the probability of the location being correct was estimated

by summing over equation 3.2 for every hypothesis h, the result of which is the

probability that any hypothesis is true for the image.

The head likelihood was calculated at each of the different translated positions

across the entire dataset. Figure 3.14 shows a histogram representing the fraction

of the dataset that gave the largest probability at each of the translated locations.

Although the ferns recognise the correct alignment most frequently, the performance

is not good enough to justify the extra processing time that would be required

to search across combinations of different scales and both horizontal and vertical

translations.
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Figure 3.15: A graph showing how the classifier performance is affected by the size
of the head images. Each experiment was repeated ten times and the error bars
represent 99% confidence intervals for the mean.

Image Size

Although the main objective of this chapter has been to develop a method for

estimating gaze directions in low resolution video, experiments were performed to

measure the performance of the classifier on higher and lower resolution head images.

As before dataset F was used for training and dataset B for testing, but this time the

images were scaled to a variety of sizes rather than just 10 pixels square to simulate

different video resolutions. The somewhat surprising result, shown in figure 3.15, is

that the performance drops when the image dimensions are increased above sixteen

pixels square. A likely reason for this is that the high resolution images contain

a wider variety of colours, which reduces the ability of the k-means clustering to

separate the background, hair and skin regions. This could be resolved by using a

more sophisticated segmentation algorithm.

Overall Results

The previous experiments have shown that the best branch selection method was to

maximise the information gain using a choice of four tests per branch, and that the

consistent naive Bayes combination method appears to work the best. Using the
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(a) Head Pose estimation without filtering
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(b) Head Pose estimation filtered using a HMM

Figure 3.16: Pose estimation graphs for a single head compared with ground truth
both with and without filtering through the use of a Hidden Markov Model. The
filtering reduces the amount of noise and makes small changes in the head pose more
visible.
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Figure 3.17: Five different head images and samples from the colour histograms
that have been learnt up to and including the current frame. From top to bottom,
the colour blocks show samples from the background, skin and hair histograms
respectively.

combination of the two improves the performance further to give a MAAE of 34.8◦.

The same experiment was repeated without the HMM, and in this case the

MAAE was 36.6◦. In addition to giving a small performance improvement, the

HMM also removes some of the high frequency noise in the direction estimates to

make them smoother, which allows more accurate estimates of the instantaneous

angular velocity. The difference between the sequence of angle estimates both with

and without the HMM for one person are shown in figure 3.16. These plots also give

some insight into a possible cause of errors, since there is a consistent difference of

approximately 30◦ between the estimated and ground truth angles. This could be

caused because the hair or skin region for the individual is larger or smaller than

the closest matching training data.

A similar experiment was also performed to demonstrate the benefits of learning

the colour distributions for individual people. With the colour learning disabled, the

performance was reduced to 36.5◦. With no temporal information at all (no colour or

HMM) the MAAE was 41.7◦. Some examples of colour histograms that were learned

for individual people are shown in figure 3.17. These histograms could potentially

be used to localise the head region in subsequent frames or to help identify the same

person in situations where there are multiple cameras.

Finally figure 3.18 shows a histogram of the error magnitude for one experi-
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Figure 3.18: Angular error histogram from tests using 9260 head images. Small
angular errors are common due to the similarity of adjacent poses

ment. This demonstrates the advantages of the MAAE performance measure over

the percentage correctly classified because there is no clear divide between correct

and incorrect estimates.

3.7 Conclusion

In this chapter a method for estimating gaze directions in low resolution video has

been proposed. The approach addresses the problem of variations in appearance by

allowing classification without making any prior assumptions about the distributions

of hair and skin colours. In particular, the following contributions have been made:

• A randomised fern based image classifier with predicate based branches was

proposed along with a corresponding algorithm for inference.

• A method for learning colour distributions corresponding to the abstract labels

to improve estimation accuracy was developed.

• Modifications were proposed to the standard methods for combining decision

tree estimates to make best use of the predicate ferns.

The implementation is suitable for real-time use, since each estimation takes

only ten milliseconds on a 2.4GHz CPU (Central Processing Unit). The coarse gaze
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classifier presented in this chapter has also been reimplemented independently since

publication [62], which verifies that the approach is sound.

The results in this chapter show good performance from particularly low res-

olution video where the head regions have been manually labelled, however the

experiments to show the effects of scale and translation errors suggest that perfor-

mance will be reduced if the head regions are less accurate, as one might expect

from automatic tracking. In the next chapter, a completely automatic system will

be developed to allow the evaluation of the gaze estimator in a more realistic context.
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CHAPTER4

Automatic Gaze Estimates for

Attention Measurement

In this chapter a fully automatic system for tracking, coarse gaze es-

timation and attention map generation is developed. A Kalman fil-

ter based head tracking system combines HOG detections with Kanade-

Lucas-Tomasi (KLT) tracking to provide head image sequences. The

head images are then classified and the resulting gaze direction estimates

used to identify the regions of a scene where people frequently look. The

result is believed to be the first large scale attention measurement system

for pedestrians who are able to walk freely and behave naturally. A paper

based on the work was published at BMVC 2009.
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4.1 Introduction

Chapter 3 developed a method for estimating gaze directions without making any

assumptions about the appearance of the observed person. This was shown to be

effective when tested using a variety of videos, however the scenario was unrealistic

because the regions occupied by heads in the video sequences used for testing were

hand-labelled. An automatic tracking system would output bounding boxes that

are less accurate than those from a human labeller, and we have shown that less

accurate head regions reduce the accuracy of the gaze direction estimates.

Problem Statement: The objective of the work described in this chapter is

to construct a completely automatic gaze estimation system that can take a video

sequence as input and produce useful gaze direction estimates as output without

any manual intervention. A complete system is required to allow the evaluation of

gaze estimation methods in a realistic context, and to determine whether or not the

levels of pose accuracy obtained are useful in practice.

The problem can be broken down into specific requirements. The first is to

obtain bounding boxes around the heads in the video sequence, which is addressed

by the multi-target tracker described in section 4.2. The second requirement is to

process the regions that are output by the tracking system to produce gaze direction

estimates for all of the people in the scene. This is covered in section 4.3, which

describes a variety of approaches to coarse gaze estimation that were tested using the

tracker output. The final requirement is to show that the fully automatic system is

able to produce output that is useful in a surveillance context. Section 4.4, describes

the attempted method for using the automatic gaze direction estimates with an

approximate model of gaze behaviour to infer the subject of interest in various

surveillance scenarios. The tracking, gaze estimation and attention measurement

components are all evaluated individually in the corresponding sections.
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4.2 Multi-Target Tracking

The first step of processing requires the pedestrians in a scene to be tracked, with

the purpose of providing stable head images for the following pose estimation step.

In surveillance video, existing approaches track whole pedestrians and then lo-

cate the heads using a further stage of processing. Our proposed approach makes

the unusual choice of tracking the heads of pedestrians directly, rather than their

entire bodies. The first reason for this choice is that security cameras are generally

positioned sufficiently high to allow pedestrian’s faces to be seen, so their heads are

obscured much less frequently than other body parts. The second is that the offset

between the centre of a pedestrian’s body and their head changes as they walk, so

tracking the head directly provides more accurately positioned head images.

Of the methods for pedestrian tracking that were reviewed in section 2.4, the

appearance based methods are more capable of coping with crowded scenes where

pedestrians are frequently occluded. The approach that we develop is most similar

to Wu and Nevatia’s [133], which found pedestrians using an edge based body part

detector and filled in the gaps between detections with mean-shift tracking [28].

Our approach combines absolute location estimates from a head detector based on

Histograms of Oriented Gradients (HOGs) [29] with velocity estimates from feature-

based tracking.

Instead of using the feature tracking only to fill in gaps, our approach combines

the measurements probabilistically using a Kalman filter (see Appendix 8.3.1). We

replace the system evolution model, which usually predicts the next state based on

a physical model, with the velocity estimations from feature tracking. The resulting

behaviour has different characteristics when compared to that of a Kalman Filter un-

der normal usage because the uncertainty in the predictions is usually much smaller

than that of the observations.

Since the pedestrians in the video sequences have a wide range of sizes, the

sequences were all fully calibrated relative to a known ground plane. Using calibrated
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Figure 4.1: Image measurements are made by following corner features using KLT
tracking (left) and by finding heads with a HOG detector (right).

videos allowed the locations of people’s feet on the ground plane to be estimated

from their head locations by assuming an average human height of 1.7 metres. The

calibrations also allowed the approximate head size to be calculated to limit the scale

range of the HOG detector, which significantly reduces the processing requirements.

4.2.1 Kalman Filter Formulation

The tracking system uses head location estimates from the HOG detector and mo-

tion estimates from KLT feature tracking (figure 4.1). A Kalman Filter normally

combines absolute observation measurements with predictions from a state evolution

model. The KLT motion estimates that we obtain are relative rather than absolute,

so they are used in the place of the standard state evolution model to predict the

state at the next time step. Table 4.1 shows how the observations correspond to the

parts of the standard Kalman filter model using the notation described in appendix

8.3.1.

The accuracy of the KLT motion estimate u is particularly important because

the HOG detector is unreliable and will often miss detections for seconds at a time.

During these gaps the KLT motion estimates must be relied upon to maintain the

track.
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Term Representation in our tracking system

x A 2D vector representing an image location, measured in pixels
P The covariance of x, measured in pixels
F Identity Matrix
B Identity Matrix
Q Covariance of KLT motion estimates
R Covariance of HOG detection
u Motion estimate from KLT tracking
z Location estimate from HOG detection
H Identity Matrix

Table 4.1: Terms used in the Kalman filter with their corresponding representations
in our tracking model.

4.2.2 KLT Motion Estimates

This section describes the method used to obtain robust motion estimations for the

heads by combining the motion estimates from multiple tracked KLT corner features

[75, 22]. The KLT algorithm tracks corners between frames by following the image

intensity gradient. The tracking algorithm is fast, but sometimes fails when the

algorithm converges on an incorrect corner feature in the background or another ob-

ject. To prevent these individual failures from affecting the tracker, approximately

ten features were tracked for each object (head) and their performance was accu-

rately modelled so that incorrectly or inaccurately tracked corner features could be

identified.

The KLT corner features were initially found by processing the initial head region

using the Shi-Tomasi [112] corner detection algorithm, which was run with a low

acceptance threshold to ensure that corners were almost always found. Whenever

corner features were lost, the current best estimate of the head region was processed

to replace the lost corners.

When corner features provide good motion estimates, we would like to retain

them to track in subsequent frames. This is because some corners are more distinc-

tive and so inherently easier to track than others, so a corner feature that has been

tracked reliably in the past is likely to be tracked reliably in the future. Let vik be
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Figure 4.2: An example illustrating how P (oik = j|oik−1 = m) is estimated. When the
bounding boxes of pedestrians overlap, it is possible that corners could be incorrectly
tracked between them. The possible state transitions for the frame on the left are
shown by the state machine on the right, where arrows represent possible transitions
between the objects that corner features follow. Although the tracked corners are
restricted to heads, full body bounding boxes are used here because corners could
be incorrectly tracked to any body part.

the motion estimate for corner feature i between frames k and k + 1, where i is an

identifier rather than an index. The feature tracking model aims to maintain esti-

mates of P (oik = j), the probability that corner feature i provides a motion estimate

representative of object j in frame k. Let Vk represent all of the motion estimates

from frame k. The probability estimates are updated recursively in three steps.

Step 1: Prediction In the first step, the object probabilities for the features are

predicted from those in the previous time step:

P (oik = j|V0 . . . Vk−1) ∝
∑
m∈J

P (oik = j|oik−1 = m)P (oik−1 = m|V0 . . . Vk−1) (4.1)

In this equation, J represents the set of all objects. The first term represents the

likelihood of corner features being incorrectly tracked in a way that causes them to

jump to a corner on a different object, and the second is the result of the update

step from the previous frame.

Each corner feature is assumed to be incorrectly tracked with probability τ , so

when j = m the first term has the value 1− τ . When a corner feature is incorrectly
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(a) (b) (c)

Figure 4.3: Diagrams illustrating the combination of the two factors in equation
4.2 to obtain an estimate of the object velocity ujk, which is shown by the green
cross. The 2D plane represents the domain of ujk, which is the movement of the
object between frames k − 1 and k. The blue background is proportional to the
density estimate from the constant velocity prior and the red circles represent the
individual motion estimates from the tracked KLT corner features, with the range
of the Parzen window shown by the dotted circle. Situations like the one shown in
(a) are the most frequent, with a well defined mode and only one or two outliers.
The situations in (b) and (c) are ambiguous, but the constant velocity component
increases the chance of the correct mode being found. In (b), half of the corners have
been incorrectly tracked to the background and in (c) another object has occluded
all but one of the corners.

tracked, the KLT algorithm is much more likely to converge on a nearby object in

the image than one that is far away. The probability of a corner from object m being

incorrectly tracked to one on object j was approximated as being proportional to the

area of intersection between the bounding boxes of the two objects. The background

was treated as an object with an infinite bounding box because it is close to all of the

objects in the scene. The state machine corresponding to an example frame is shown

in figure 4.2. In this example the two people on the right are close in the image so

the state machine models the possibility that KLT corners will be incorrectly tracked

from each to the other. Although these probability estimates are not particularly

accurate, they are important for ruling out the possibility of KLT corner features

being incorrectly tracked between objects with similar velocities that are not close

to one another.
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Step 2: Object Velocity Estimate The next step is to estimate the object

velocity ujk using the predictions and the motion estimates from individual corners.

First the most likely candidate velocity is found:

ujmax = argmax
uj

P (uj|ujk−1)P (uj|V0 . . . Vk) (4.2)

The first term, P (u|ujk−1), is based on a constant velocity model with large Gaussian

error. This component is usually of little significance, but in circumstances where

the distribution of motion estimates becomes multimodal it increases the chance of

the correct mode being identified. These ambiguous multimodal distributions occur

in situations such as when half of the corners are incorrectly tracked and end up

on the background (see figure 4.3). The second term is estimated using a Parzen

window density estimate over the individual motion estimates:

P (uj|V0 . . . Vk) ∝
∑

|u−vik|<r

P (oik = j|Vk−1) (4.3)

The window radius r is large enough to include most of the correctly tracked corners

but removes outliers so that they do not bias the velocity estimate.

For efficiency, an approximate maximum to equation 4.2 is found by evaluating

it at the locations corresponding to each of the vik motion estimates from the tracked

corners. If more time were available for processing, an iterative mode seeking al-

gorithm such as mean-shift could be used, though it would have to be modified to

cope with multiple modes.

Finally the object velocity is calculated as a weighted mean of the inlier motion

estimates:

ujk =

∑
|ujmax−vik|<r

vikP (oik = j|Vk−1)

∑
|ujmax−vik|<r

P (oik = j|Vk−1)
(4.4)

Here it is assumed that the object motion is only a 2D translation because the small
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head images do not provide enough information to reliably constrain a model with

more degrees of freedom. For larger images of more complex objects, methods such

as affine transfer [103] which take object structure into account would potentially

be more appropriate.

Step 3: Update The final step is to calculate the posterior probabilities using

the object velocity estimate:

P (oik = j|V0 . . . Vk) ∝ P (vk|oik = j, ujk)P (oik = j|Vk−1) (4.5)

The value of P (vk|oik = j, ujk) is estimated by assuming that the error in the KLT

motion estimates has a Gaussian distribution. When an object moves slowly, the

distributions for the object and the background overlap, so for a newly found corner

many frames are required to reach a high probability of the corner being on the

object. When objects move quickly there is better separation between the distribu-

tions so only one or two frames are required. The parameters for this and the other

distributions that are used in this section were estimated empirically by comparing

the motion estimates with hand labelled data in a short section of video.

4.2.3 Implementation Details

There are a number of details that are not of theoretical interest but which would

be required for an accurate reimplementation.

HOG Detection Gating The tracking algorithm was originally developed using a

CPU implementation of the HOG detector, which required approximately 22 seconds

to process a 1920x1080 image. This is far too slow for real-time usage, so instead it

was only applied to small regions that were defined by three standard deviations of

the uncertainty in the head location. The expected size of the head in each of the

corners of the detection region was calculated and used to constrain the scale range of
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the detector as well. These constraints reduced the detection time to approximately

200ms per frame.

2D and 3D Conversions Aspects of the tracking system rely on the camera

being calibrated with a known ground plane. The calibration is used to calculate

bounding boxes, to convert head locations to ground plane locations, and to estimate

the correct size for a head at any image location. Humans were modelled as cylinders

1.7m in height and 0.5m in diameter, with the heads represented as ellipsoids 0.22m

in height and 0.20m wide.

Adding Targets The HOG head detector was too slow to run over full video

frames so new targets were added by detecting motion consistent with that of a

pedestrian. Two hundred KLT features were continuously tracked, with their loca-

tions reassigned every ten frames to a random image location. If any features were

found to move in the same direction (i.e. dot product of 2D velocity is positive) for

three frames or more then a tracker was initialised. Since the movement could be

on any part of the person, the trackers were initialised with a covariance that was

large enough to cover all possible head locations.

Removing Targets Successfully identified targets still have a significant chance

of being lost. It is important to detect lost targets both to reduce the number of false

positives and to prevent processing time from being wasted. Targets were considered

to be lost if any of the following conditions were broken:

• The target speed must be less than 3× mean human walking speed (1.26m/s)

on at least 90% of measurements

• The target speed is more than 2cm/s on at least 50% of measurements

• The direction of the target must have changed by less than 90◦ on at least 90%

of measurements
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• The Kalman filter standard deviation is less than twice the object size

• At least half of the head area must be within the bounds of the current video

frame.

These conditions were evaluated over the most recent three seconds of data. They

allow a large margin for noise in the measurements but are able to quickly remove

targets when the tracking fails or people leave the scene. The only case where these

conditions frequently fail is when people stand still for long periods of time, in which

case they are very difficult to distinguish from false positives in the background.

4.2.4 Tracking Evaluation

Two experiments were carried out to test the performance of the tracking algorithm,

both using a the Town Centre video which is three minutes long and has all 71473

ground truth head regions hand labelled (see section 2.6.1). The first experiment

examined the accuracy gained from modelling the tracking errors of the KLT corner

features using the state machine method described in section 4.2.2. The aim was to

justify the benefit derived from the proposed method, so two baseline methods were

implemented to allow a comparison. The first baseline method estimated the object

velocity using the mean of the KLT motion estimates and the second found the

mode using the Parzen window as in equation 4.3, but with feature velocities having

equal weights instead of the learned probabilities. The heads of pedestrians were

initialised to the correct location and tracked for twenty second intervals without

any measurements from the HOG detector and compared with the ground truth

data to measure the rate of drift.

The rate of drift was measured by taking the mean overlap between the ground

truth head regions and the regions that were predicted by the KLT tracking. This

measure is plotted over the twenty second interval in figure 4.4 (left) for the proposed

method and the two baseline methods. The plot shows that the method we use for
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modelling the KLT tracking errors results in the estimated regions having an average

overlap of approximately 40% after twenty seconds compared to approximately 20%

for the two baseline methods. The results include estimates with no ground truth

overlap, so if these were excluded the mean overlap would be considerably higher.

The drift rate decreases with time because some heads are easier to track than

others, so those that have been tracked with little drift in the past are likely to have

little drift in the future.

The second experiment tested the ability of the tracking algorithm to locate the

heads in each frame of the video sequence compared with HOG detections alone.

Performance was measured using the standard precision and recall measures, the

former being the fraction of estimated regions that were genuine, and the latter being

the fraction of ground truth regions that were found. Ground truth regions were

considered to be matched with estimated regions if the area of their intersection was

more than 25% of the area of the ground truth region. Both the tracking system and

the HOG detector could be tuned to provide a different balance between precision

and recall, so figure 4.4 (right) plots the two measures against each other. The

balance between the precision and recall was adjusted for the HOG detector by

changing the threshold on the required distance from the dividing hyperplane, and

was adjusted for the tracker by applying a threshold to the Kalman filter covariance.

The plot shows that the tracking algorithm is able to locate approximately twice

as many heads as the HOG detector alone before experiencing a significant drop

in precision. In addition to providing more accurate head locations, the tracking

allows the detector to be applied to only a small subset of each frame, reducing the

processing time by a factor of approximately 100.

A comparison of the general tracking performance of this system with others can

be found in section 5.3.2.
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Figure 4.4: Left: Drift from cumulative errors in the motion estimation without
guidance from HOG detections over twenty seconds of tracking (500 frames) Right:
Comparison of the combined tracking algorithm to HOG detections alone. The
tracking algorithm locates approximately twice as many heads before having a sig-
nificant drop in precision.

4.3 Head Pose Estimation

This section describes the approaches to coarse gaze direction estimation that were

attempted. There are four methods in total. The first is the method from chapter 3

which was based on predicate ferns. The next approach was also based on ferns, but

with different branch tests based on two new feature types. These two feature types

were also used in the third method, but with a SVM rather than ferns. The fourth

method was an implementation of Orozco’s method [91] which was based on Mean

Template comparisons with an SVM classifier. All four methods are based around

classification into eight direction classes, as described in chapter 3.

4.3.1 Predicate Ferns

The first method to be considered was the low resolution classifier that was described

in chapter 3. Provisional testing showed that the predicate ferns did not perform as

well on the tracker output as for still images, which provided motivation for trying

other approaches. The lower performance was probably due to a combination of
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Figure 4.5: The two branch test types that were tested for use in the randomised
fern classifiers. The first test type (left) is determined by comparing two bins from
normalised HOG descriptors and the second test type (right) compares three differ-
ent colour samples

head location errors and compression artifacts which were not as significant in the

datasets that were previously used.

4.3.2 HOG/CTC Ferns

The choice of branch tests for a gaze direction classifier is critical; branch tests must

be able to recognise general properties of each direction class irrespective of the

large variations in appearance between people and any errors in the head location

estimate. Two different branch test types were tried, both compare values from

different image locations against one another rather than against a fixed threshold

which makes them robust to brightness variations and colour tints. The branch test

types are illustrated in figure 4.5.

HOG Descriptor Decisions

The first branch test type is based on the HOG descriptors that Dalal and Triggs

[29] used as input for their pedestrian detector. Dalal and Triggs showed that the

coarse spatial binning of their descriptors was beneficial for object detection because

it made the descriptor robust to small differences in the locations of edges. This is

a desirable property for making gaze classifiers invariant to translation errors.

93



The descriptors are calculated by first measuring the image intensity gradient at

every pixel in nine different directions. The image is then divided into a square of

sixteen cells and for each cell a histogram over the nine orientations is generated from

all of the pixels within that cell. The histograms for each cell are then normalised

across blocks, where each block consists of 2×2 cells, of which there are 9 possibilities

for the 4 × 4 arrangement of cells that are used. The final descriptor has 324

elements, consisting of each of the four histograms in every block, where each of the

histogram bins is normalised using the same angle bin in the other three histograms.

Having generated the descriptors, the HOG fern branch tests simply compare two

randomly chosen elements in the normalised descriptor and the test outcome depends

on whether the first or second is larger.

Colour Triplet Comparison Decisions

A new descriptor, the Colour Triplet Comparison (CTC), was developed with the

intention of providing some of the benefits of the predicate ferns but without the cost

of the hypothesis evaluation. Each CTC branch test samples colours from pixels at

three different locations within the tracked head region and makes a binary decision

based on whether the first and second colours are more similar than the second and

third colours. Similarity is measured as the sum of the differences in each of the

RGB components (i.e. the L1 Norm of the vector difference).

The reason for including three colour samples is to make the comparison more

robust; in particular the branch test is invariant to any change in the brightness or

contrast of an image.

4.3.3 HOG/CTC SVM

Many of the other recent approaches to coarse gaze direction estimation have been

based around SVMs. As a comparison, the HOG and CTC branch tests were also

tested with a multi-class SVM classifier using a polynomial kernel function. An
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eight-class classifier was trained using the one-against-one method, which was found

to perform better than a one-against-rest classifier. Since many different HOG and

CTC branch tests are possible, 10000 randomly chosen branch tests were used to

train the SVM. The branch tests were used rather than the raw image measurements

because of the invariance they provide to natural image variations, and because using

them allows a more direct comparison of the performance of the ferns and the SVM.

4.3.4 Mean Templates

A recent method for gaze estimation that was applied to similar video was the mean

templates method of Orozco et al.[91]. The method was based around a one-against-

rest SVM classifier with a polynomial kernel function, where the input vector consists

of the difference between the test image and a series of eight mean templates. Each

mean template was the mean of the training data images belonging to the 45◦ range

of the class, where the background was labelled as black either through manual

labelling or background subtraction. Orozco’s method was implemented so that a

comparison could be made with our various approaches.

4.3.5 Gaze Estimation Evaluation

The acquisition of head images using automatic tracking allowed the different estima-

tion methods to be compared in a realistic setting. The gaze estimation algorithms

were trained using the two still image datasets; the first (dataset A) was higher reso-

lution than the second so was more appropriate for testing on the video datasets, but

the second training dataset (dataset F) had labelled segmentations, so was required

for comparing with the predicate ferns. For testing, large datasets of head images

from automatic tracking in the Town Centre and i-LIDS video sequences were used

(datasets C and D), with the hand labelled video dataset from chapter 3 (dataset

B) used as a comparison. Details of all datasets can be found in section 2.6.2.
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(a) HOG/CTC Ferns  (b) Predicate Ferns  (c) Mean Templates  (d) HOG/CTC SVM  

Figure 4.6: Results from testing the gaze estimation algorithms on four different
datasets. Each result is the mean of ten repetitions. The top two charts measure
performance using the MAAE, for which lower values are preferable, and the bottom
two charts use the percentage correctly classified with eight classes, for which larger
values indicate better results. The left two charts show results from training on
dataset A and the right two show results from training on dataset F.

Comparison of Gaze Estimation Accuracy

Figure 4.6 shows the results of experiments where each of the four algorithms were

trained using datasets A and F and tested on datasets A, B, C and D, which are the

most realistic conditions. A table showing the result of comprehensively training

and testing every algorithm on every dataset can be found in appendix 8.2. For

this experiment, the results using both the MAAE and the 8-class accuracy are

shown to demonstrate that the quantisation from a class-based measure can mask

the difference in performance between algorithms. An example of this can be seen

by comparing the two measures for the HOG/CTC ferns and SVM when training

on dataset A and testing on dataset B. The 8-class accuracy suggests that the two

methods perform equally well, but the more accurate MAAE shows that the ferns
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Figure 4.7: The 8-class accuracy resulting from testing and training on the same
dataset. The left plot shows results from dataset A, where images are uncorrelated
so the experiments are fair. The right plot shows the result of testing on dataset
D, a video dataset where many of the head images are similar. The results are
significantly higher than those obtained on the dataset with correct separation of
the training and testing datasets.

outperform the SVM.

These results show conclusively that the HOG/CTC ferns perform the best across

all four datasets. The predicate ferns perform better than the HOG/CTC SVM on

dataset B, where head regions were hand labelled, but perform worse on the others.

This suggests that the HOG and CTC decisions provide better invariance to location

errors.

The mean templates algorithm had the worst performance on all datasets, how-

ever the 8-class accuracy of 23% using dataset D is inconsistent with the 77%-80%

presented by Orozco et al. [91] using a dataset acquired from the same video se-

quence. It seems likely that the discrepancy was caused by the training data, which

in our case was assorted still photos, but in Orozco’s experiments is likely to have

come from the same dataset. Some experiments were used to test this theory, the

results of which are shown in figure 4.7. The plot on the left shows the result of
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Figure 4.8: A graph plotting the MAAE for each of the eight individual direction
classes using the four gaze estimation algorithms. The experiments use half of
dataset F for training and the remainder for testing. The largest errors occur for
the images facing directly towards or away from the camera.

testing and training each algorithm on dataset A, which consists of individually ac-

quired still images so provides realistic results. The plot on the right shows how

testing and training on the head images from dataset D, which was extracted from

a video, results in apparently better performance. Images that are collected from

different frames in the same video dataset tend to be very similar, so any testing and

training on the same video dataset results in classifiers that are highly customised

for the particular video but which do not generalise well so are not useful for most

applications. Independent experiments using the mean templates on other datasets

[113] demonstrated similar performance levels to those obtained in our experiments.

Some additional insight into the failure cases of the four methods can be found

in figure 4.8, which plots the error for each of the eight individual direction classes.

The algorithms were trained using 50% of dataset F (equally distributed among the

classes) and tested using the remaining 50%, and the mean was calculated using
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Figure 4.9: Effects of different training parameters on the estimation accuracy
of randomised ferns using the two feature types both individually and combined.
Unless otherwise specified, 20 ferns with 16 branch tests and 8 classes were trained
using a region 1.2 times the size of the head. The errors specified are the mean
absolute difference between the angles interpolated from the ferns and the ground
truth.

twenty repetitions of each experiment. The peaks in the error can be found at the

classes representing head images that face directly towards or away from the camera.

The peak in the error for heads facing away from the camera is largest for three out

of the four algorithms and is likely to occur because neither the hairline or facial

features are visible. The smaller peak in the error for heads facing towards the

camera could be due to more variation in the images for this class than the others.

Analysis of HOG/CTC Ferns

The HOG/CTC ferns performed the best out of the tested algorithms, so some

further experiments were carried out to find out which factors were important for

their performance.

99



The effects of altering the basic parameters when training the HOG/CTC ferns

using both feature types were tested using the hand labelled head images (dataset

A). Ferns were trained using 80% of the images (approximately 1200) and were tested

using the remaining 20% (300 images). The two subsets were randomly chosen but

it was ensured that both subsets were evenly distributed around the 360 degree

range. The results in figure 4.9 show that the HOG features performed better than

the CTC features alone, but a combination of the two gave the best performance.

An interesting observation is that the CTC descriptors are more accurate than the

HOG descriptors when the head images are cropped without a border. This suggests

that the outline of the head provides important edge information, but the colour

information from the background is not useful.

There is inevitably some amount of translation error in the location estimations

from the head tracker which introduces error in the gaze direction. This was ob-

served from the experiments in section 3.6 of the previous chapter, but the following

methods were not tested with the predicate ferns due to the expense of labelling the

training data and the time required for classification. Since location errors affected

the accuracy the most, three different approaches to correct for them were tried:

Training with artificial errors: Classifiers were trained with example images

to which translational error with a standard deviation of up to half the head diameter

was introduced.

Local Maximum: An additional classifier was trained using head/non-head

examples and used to search for the most likely head location in a small region

around the given position. The most likely region was then classified as usual to

estimate the gaze direction.

Weighted Mean: Similar to the local search, except that classification was

performed at every location within the search region. The resulting gaze estimate

was the mean of the classifications weighted by the likeliness from the head/non-head

classifier.
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head/non-head images.
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The second two approaches were tested both using separate ferns for detection

and classification and also using a combined detector and classifier which had an

additional class to represent non-heads. As before, 80% of dataset A was used for

training and the remaining 20% for testing, but normally distributed random error

was introduced into the test images with a standard deviation of up to half the

head diameter. The results of the experiments are shown in figure 4.10. Neither

the local search or weighted mean improved the accuracy but training with small

artificial errors improved the performance when the test region error was larger or

approximately equal to the training error.

4.4 Measuring Attention

In ordinary day-to-day behaviour humans identify interesting objects in their sur-

roundings by drawing on knowledge of the world that they have accumulated through-

out their lifetime. In contrast, for an automatic reasoning system world knowledge is

very limited, so making such inferences is extremely difficult. This section describes

our attempts to measure the subject of interest of the people present in a scene au-

tomatically and unobtrusively from remote security camera footage. The resulting

information can be used to direct the attention of an observer towards locations that

might be of interest.

4.4.1 Attention Model

The accuracy of the tracking and gaze direction estimation can be measured ob-

jectively, but the level of accuracy that would be required for the system to be

of practical value is difficult to define and likely to be application dependent. To

demonstrate that the system is able to produce accurate enough results for at least

some applications, an ad-hoc model of attention was developed and used to build

attention maps representing the amount of interest received by different areas in a
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Figure 4.11: A diagram representing how θ, and φ are calculated from the walking
direction w, the estimated gaze direction g and the attention map location m.

scene.

These attention maps work on a similar principle to Gaze Fixation Maps [132]

which are commonly used with high resolution gaze tracking systems to represent the

most frequently viewed areas of an image in psychological studies. Our attention

maps are different because the map is used to represent attention on the ground

plane where the line of sight is approximately parallel to the plane, whereas fixation

maps represent attention on a plane that is approximately perpendicular to the line

of sight. Fixation maps are used to measure observation times over small regions

in the order of 1m2, in contrast to our attention maps which typically represent

large areas of approximately 100m2. A final difference is that our attention maps

estimate the amount of attention that is received by a scene location rather than

just cumulative gaze time.

The attention map is stored as a 2D grid where each square represents the level

of attention received by one square metre of the ground. Let m be a vector from the

pedestrian’s 2D ground plane location to the centre of a square on the attention map.

We would like to determine the probability that m is the subject of the pedestrian’s

attention, which is calculated from unit vectors g and w representing the gaze and

walking directions respectively, as illustrated in figure 4.11. The attention received
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is then calculated using the following:

P (a, l(m)|θ, φ) = P (a|l(m), φ)P (l(m)|θ) (4.6)

When a pedestrian walks it is likely that they will be looking forwards but in most

cases this will be to avoid collisions with objects rather than to look at a specific

scene location. This is modelled using the random variable a, which is true if the

location where the pedestrian looks actually has the attention of the pedestrian

and false if the pedestrian is looking in the direction but not at anything specific.

The function l(m) is true when the pedestrian is looking at location m and false

otherwise.

The value of P (l(m)|θ) was modelled as the product of two components. The first

was based on the assumption that the probability of a scene location being viewed

depends on the amount of space that the scene location occupies in the pedestrian’s

field of view and the second modelled the error in the gaze direction estimate as

having a Gaussian distribution:

P (l(m)|θ) ∝ 1

|m|
e
− θ2

2σ2g (4.7)

The value of P (a|l(m), φ) was estimated as 1 − P (a|l(m), φ), with P (a|l(m), φ)

depending only on the value φ which was modelled using a normal distribution with

variance σ2
a. In the absence of any empirical measurements, σg and σa were assigned

the values 45◦ and 30◦ respectively. The result of this model is that pedestrians

glancing away from their direction of motion are considered to be much more likely

to be showing interest in a scene location than those who look in their direction of

motion.
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Figure 4.12: Examples showing the contribution to the attention map from a single
frame where a pedestrian faces in different directions relative to their walking direc-
tion. The solid line shows the direction of motion and the dotted line represents the
estimated gaze direction. The scale is shared between examples; red indicates large
positive values and blue indicates large negative values. Gaze directions facing away
from the direction of motion are more significant, so have a greater influence on the
attention map.

4.4.2 Measuring Static and Transient Attention

Different approaches were used for measuring the focus of attention depending on

whether stationary or moving objects were of interest.

Transient Attention To identify a transient subject of interest requires informa-

tion from multiple people to resolve depth ambiguities. The attention map estimates

from equation 4.6 were summed for each person over the most recent three frames

before the product was taken over the people in the scene to identify intersections

of their attention.

Static Attention If the focus of attention is assumed to be static, the locations

of interest are found by accumulating the attention estimates over an extended

period of time. There is however a problem with summing equation 4.6 because

the attention model assumes that the focus of attention is more likely to be close

to the pedestrian than far away. The result is that erroneous attention estimates

accumulate along paths frequently travelled by pedestrians. To prevent this from

occurring, the following function was accumulated instead:

A(m) = P (a, l(m)|θ, φ)− P (a, l(m)|θ + π, φ+ π) (4.8)
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This function sums to zero across the attention map so does not bias the attention

map towards frequently travelled paths. The motivation for subtracting the proba-

bility of the subject of interest being in the opposite direction is that a pedestrian

will only move their head away from a scene location if there is nothing of inter-

est there. The function A(m) is plotted in figure 4.12 for different relative gaze

directions.

4.4.3 Attention Measurement Evaluation

The tracking and head pose estimation were combined to make a fully automatic

system which could be used to measure the amount of attention received by different

areas of a scene. When applied to video sequences, the direction estimates from the

randomised ferns were smoothed using a hidden Markov model to enforce temporal

constraints. The gaze direction estimates were also limited to a 180 ◦ field of view

around the direction of motion when people were moving at more than 0.63ms−1

(half the mean human walking speed). Using a GPU implementation of the HOG

head detector [99], the complete system runs at 15 frames per second (fps) on 640×

480 video or approximately 5fps on 1920× 1080 video.

Three different video sequences were used to test different applications of the

attention maps; details of all three can be found in section 2.6.1. The first experiment

involved the analysis of the Town Centre video, which covers a busy town centre

street with up to thirty pedestrians visible at a time. The aim was to identify

areas receiving attention by accumulating gaze estimates over twenty-two minutes

of video. The results from tracking approximately 2200 people are shown in figure

4.13. The frequently viewed areas that were identified by the gaze map highlight

the shop window in the scene as a popular subject of attention.

In the second experiment, we attempted to artificially draw the attention of

people to a particular location in the scene by attaching a light to the wall at eye

level. For this experiment attention maps were generated both with and without
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Figure 4.13: A frame showing the gaze direction estimates and the paths along which
pedestrians were tracked. The lower images show the accumulated attention map
and the result of projecting it onto a video frame, identifying the shop window as a
popular subject of attention. The blue lines on the attention map show the edges
of the road.
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Figure 4.14: Attention map (right) resulting from attempts to artificially attract
attention using a light mounted at eye level, the location of which has been marked
with a red circle. Blue lines show the approximate floor outline. The extension of
the highlighted region to the left is probably due to most observers walking along
the left side of the walkway and the depth ambiguity.

the light stimulus. The accumulated map without the light was subtracted from the

map that was built with the light present to correct for the stimuli normally present

in the scene. The resulting attention map from tracking a total of 477 people over

two hours of video is shown in figure 4.14. The location where the attention map

measured the largest increase in attention is around the red circle, which marks the

location of the light stimulus.

Where the purpose of the first two experiments was to measure the attention

received by static objects, in the third the aim was to identify a transient source

of interest. To resolve the ambiguities caused by not knowing the distance between

the pedestrians and the subject of their attention, the gaze estimates from the two

people in the scene were multiplied and combined over a sliding window of three

frames. The resulting intersection, shown in figure 4.15 identifies the passing car as

the subject of attention.
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Figure 4.15: Sequence showing how the attention map can be used to highlight
transient areas of interest. The left column shows video frames with annotated gaze
directions, the middle column shows the corresponding attention maps and the third
column shows the video frame modulated with the projected attention map, under
the assumption that the subject of interest is between 0 and 2 metres above the
ground
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4.5 Conclusion

We have demonstrated a system that is capable of both automatically tracking a

number of pedestrians in the presence of occlusions and which can estimate the

amount of attention that the pedestrians give to different areas of the scene. In a

simple scenario we demonstrated the measurement of transient interest, which could

be used to guide a dynamic camera to observe the most interesting areas.

The following specific contributions were made:

• A multi-target tracking system was developed for the specific purpose of ob-

taining stable image sequences

• Robust randomised fern based gaze classifiers were developed, which included

the new CTC image measurement to provide invariance to lighting effects.

• A complete system for measuring attention in large scale scenes was demon-

strated. This is believed to be the first system to measure attention in general

unconstrained scenarios.

The tracking system is robust and capable of tracking multiple people in low

resolution video in real-time. The method for modelling the accuracy of motion

estimates from corner features was shown to improve performance over naive alter-

natives.

The comparison of gaze estimation methods showed that the proposed HOG/CTC

fern classifier outperforms the other methods that were tested. The extra experi-

ments that were carried out determined the optimal training parameters for the gaze

direction classifier. The error in head localisation was identified as a weak point in

the system, with none of the attempted methods for improving invariance resulting

in a worthwhile performance increase.

The attention maps from the three experiments demonstrate the potential of the

system to provide useful information which could be used for higher level reasoning
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or camera control, but there is still significant room for improvement. A limitation of

the basic attention model used in this chapter is that it only allows us to determine

the relative levels of interest between different scene locations. Although this allows

the most observed locations to be identified, there is no way to determine whether

or not the level of attention that was received is significant or not. This limits the

applicability to fairly constrained application domains where, for example, one would

like to compare the level interest received by two objects. Less well defined scenarios

such as anomaly detection would require a more principled model to determine the

absolute level of interest that is significant.

The method for determining transient subjects of interest is limited by the as-

sumption that any overlap in the attention maps from different people is significant.

The demonstration scenario involved only two people, but the number of overlaps

will increase quadratically with the number of people. In more crowded situations, it

would be necessary to consider all intersections jointly and use that fact that people

are unlikely to observe more than one location simultaneously to develop a more

sophisticated probabilistic model.

The prototype system that was developed in this chapter has provided a proof of

concept, but also verifies the problem of misaligned head images that was predicted

in chapter 3. The next chapter addresses this problem by improving the tracking

algorithm to provide more accurate and stable head regions, as well as improved

real-time performance and robustness. The method for learning classifiers that is

presented in chapter 6 also attempts to improve performance with misaligned head

images by allowing vast quantities of training data to be used.

A second issue that became apparent when the tracking system was tested on

a variety of video sequences was that the tracker would often lose people who were

standing still. The problem resulted partly from stationary people being difficult to

distinguish from repeated false-positive detections in the same background location,

but also because the use of KLT motion to detect people prevented stationary people
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from being re-acquired after being lost by the tracker. The three test sequences used

in this chapter contained mostly moving people, but in practice this is often not the

case. The tracking algorithm that is developed in the next chapter also attempts to

resolve this issue.
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CHAPTER5

Stable Multi-Target Tracking with

Markov-Chain Monte-Carlo Data

Association

This chapter describes the development of an improved tracking system

with the specific aim of acquiring accurate head location estimates. The

system tracks crowded scenes where pedestrians frequently occlude one

another in real-time using Markov-Chain Monte-Carlo Data Association

(MCMCDA) within a temporal sliding window. The accuracy levels are

comparable to those previously only achievable through offline processing.

A paper based on the work was published at CVPR 2011.
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5.1 Introduction

Chapter 4 described the development of a working system for automatically tracking

pedestrians, measuring their coarse gaze directions, and then using the results to

infer properties of the scene. Having proven the value of the general concept, we

now attempt to improve upon it. A significant issue affecting the accuracy of the

system was shown to be that of incorrectly aligned head regions. Although the

system typically tracks 80-90% of the visible pedestrians, in order to obtain good

results from the classifiers, it was necessary to only make use of head regions from

people for which the tracker covariance was very small, so only approximately 50%

were used to generate the gaze maps. The high tracker covariances resulted from

the HOG head detector firing infrequently on some people.

A second significant issue occurs when pedestrians stand still, making them dif-

ficult to distinguish from the background. The tracker from chapter 4 uses a series

of rules based on motion to remove false positives, however this approach often re-

sults in genuine pedestrian tracks being deleted if the pedestrian stands still. The

statistics of the head detections and motion estimates for a stationary pedestrian

are very similar, so the information from one or two frames is not enough to reliably

distinguish between them.

There are also various other failure cases that identify areas where the system

could be improved. When pedestrians walk close to one another, the data association

often becomes unclear when people are not detected for a few seconds at a time, the

result being an identity switch where the tracker moves from one person to another.

Also when a pedestrian’s head is obscured, the KLT tracking can fail completely,

causing the tracker to lose them. A final issue to be addressed is that of speed, since

to be of value the system must be able to run in real-time.

Problem Statement: The work described in this chapter aims to develop a

head tracking system that is more accurate than the Kalman filter based system

of chapter 4. The two specific primary objectives are to generate more precisely
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Figure 5.1: An example of a frame in which we would like to track (centre) and
sample output from our system (right). The images on the left show the result of
a naive approach which applies a fixed offset to a pedestrian detection to estimate
the head location, the result of which is badly centred and drifts around as the
pedestrian walks.

aligned bounding boxes around the head images and to increase the fraction of

heads that can be reliably tracked. There are also two secondary objectives, which

are a reduction in the number of identity switches and improved efficiency to allow

video containing large crowds to be processed in real-time.

The remainder of this chapter covers the development of a tracking system that

was designed specifically to address these issues, with the knowledge gained from

the failure modes of the Kalman filter based tracker of chapter 4 guiding the design.

The resulting tracker is able to achieve high levels of accuracy whilst maintaining

real-time (25 fps) performance when tracking multiple pedestrians in high definition

surveillance video. As before, we track the heads of pedestrians rather than their

full bodies. The benefit in terms of tracker stability of tracking heads directly rather

than taking an offset from a full body tracker are demonstrated in figure 5.1. To

generate the images on the left, the mean offset between full pedestrian bounding

boxes and the centre of their heads was calculated. This mean offset was used to

crop the head images from the mean location within the full body bounding boxes.

The resulting head images are poorly centred and drift around because the genuine

115



offset to the head changes as a pedestrian walks. The example head images on the

right are much more accurate and are the result of tracking heads directly.

To cope with the complex data association problems that occur when tracking

large crowds of people, we make use of Markov-Chain Monte-Carlo Data Association

(MCMCDA), which has only recently been applied to surveillance video. Data

association is the problem of matching image measurements (observations) to the

target (pedestrian) that caused them to be made. We will use the term track to

refer to the sequence of observations that have been associated with an individual

target. MCMCDA optimises the data association hypothesis by considering the joint

probability of all the observations from a short time period, allowing ambiguities to

be easily resolved, and with the additional benefit of having no fixed requirement

for processing time.

The system makes use of a temporal sliding-window so that the MCMCDA can

use future as well as past information, which is of particular benefit when detections

are missed. Traditional feed-forward methods for data association (see section 5.1.1)

only use past information, which is often insufficient. Using a sliding window rather

than an optimisation over the entire video sequence allows the tracker to be run

continuously without limitations on the length of the video that can be processed,

and also allows output for a video frame to be generated shortly after it is received.

A tracking model is developed to accurately represent the error accumulation and

failure modes of the observations, which consist of both HOG head detections and

short KLT motion estimates. This allows the frame-to-frame motion to be estimated

with pixel-level accuracy and also provides inherent robustness to brief occlusions.

The resulting location estimates are accurate enough for the generation of stabilised

sequences of images from most of the pedestrians in a scene.

Next we consider the problem of false-positives. These frequently occur in the

background when the detector fires on a fixed object and are often difficult to

distinguish from people standing still. Most previous approaches have assumed
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that false positives occur as individual uncorrelated detections, however in prac-

tice appearance-based detectors often generate repeated false-positive detections in

similar locations. Nonetheless we observed that sequences of false-positives exhibit

subtly different motion than sequences resulting from genuine people, who tend to

move at least a small amount. Bibby and Reid [12] recently showed how multiple

motion models could be used to distinguish moving objects from stationary ones in

a SLAM (Simultaneous Localisation And Mapping) context using a temporal slid-

ing window. We apply a similar approach to the domain of pedestrian tracking by

treating the identification of false positives as a model selection process. Separate

models are created for the stationary false-positives and moving pedestrians, and

the identification of the appropriate model is combined with the data association.

Finally, the speed of the system is improved through the development of an

efficient asynchronous multi-threaded architecture which ensures that the system is

able to operate robustly under real-time constraints. In particular it is shown that

the system is able to produce good results even if only a small latency is allowed.

A comprehensive evaluation of the real-time tracker on two different datasets is

performed using the standard CLEAR MOT (Multi Object Tracking) [11] evaluation

criteria.

5.1.1 Data Association

To track an object, observations at regular intervals are required. The data as-

sociation problem is that of determining which observations are from each target.

The presence of false-positives, missed observations and multiple targets in similar

locations can make the true data association difficult to determine. Since the first

tracking systems were developed, various methods for solving the data association

problem have been developed.

Nearest Neighbour (NN) is the most basic method for data association, and

simply involves assuming that the closest observation to the predicted target location
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is the correct one. An extension to situations with multiple targets is Global Nearest

Neighbour (GNN). GNN prevents any observation from being assigned to more than

one target by finding the globally optimal pairing of observations to closest targets,

typically using the Hungarian algorithm [59].

One failure mode of NN and GNN occurs when the observations are equally

likely, so there is a high probability that the wrong observation will be associated.

Bar-Shalom and Tse’s Probabilistic Data Association Filter (PDAF) [7] attempts to

deal with this. Instead of accepting a single observation, an average of observations

is taken, each weighted by their association probability. Although PDAF produces

reasonable results for single targets, issues can arise when there are multiple targets

present because individual observations can contribute to the updates of multiple

targets. This problem was addressed by Fortmann et al.’s Joint Probabilistic Data

Association Filter (JPDAF) [32] in which assignments of observations to targets are

considered jointly, allowing multiple assignments to be prevented. The marginal

assignment probabilities for each target are calculated and used as for PDAF.

A more robust solution is Multiple Hypothesis Tracking (MHT) [102], which

maintains a set of hypotheses that are expanded at each time step using every pos-

sible combination of data associations. The hypotheses each maintain their own

estimate of the target state. When the set of hypotheses grows too large, the set

is pruned by removing the least likely hypotheses. Another robust solution is Re-

versible Data Association (RDA) [12], which maintains just a single hypothesis but

allows the contributions of incorrect associations to be removed if it later becomes

apparent that they were incorrect. This has the advantage of only requiring a single

hypothesis to be stored.

5.1.2 MCMCDA

The tracking algorithm described in this chapter is based around MCMCDA, which

involves the use of stochastic sampling to explore the space of possible data asso-
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ciations. This has a number of advantages over other data association methods.

Although MHT considers many hypotheses, the number of possibilities grows expo-

nentially with time. For situations where there are many targets present, this could

result in hypotheses being pruned before enough information has been gathered for

their validity to be accurately determined. MCMCDA improves on RDA because

it not only allows past data associations to be removed but also allows them to be

added or reinstated.

The first systems to make use of MCMCDA were developed for tracking a single

[10] or fixed number [96] of targets. Oh et al. [90] developed the approach for general

multi-target tracking problems to associate sequences of absolute observations into

an unknown number of tracks.

Later work developed MCMCDA tracking systems specifically for visual tracking

by associating object detections resulting from background subtraction [135] and a

boosted Haar classifier cascade [73]. The most recent work [35, 115] further spe-

cialises the approach for visual tracking by using not only object detections but

also motion estimations or tracklets by applying a standard tracking algorithm for

a short period of time after each detection. Our method also uses a combination of

detections and motion estimates and bears closest resemblance to the work of Ge

and Collins [35], however we make a number of improvements.

5.2 Sliding Window Tracking

Achieving real-time performance remains beyond the reach of most existing tracking-

by-detection systems. We note that the detection stage is a bottleneck and most

algorithms cannot run at full framerate, especially in high definition video. Dalal

and Triggs’ Histogram of Oriented Gradients (HOG) [29] based detector, one of the

most popular and successful detectors, requires approximately 200-1200 milliseconds

to run even when using GPU acceleration [99]. Our multi-threaded architecture
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MCMCDA 
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Window 
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Data Associations 

Figure 5.2: A block diagram for the MCMCDA tracking system. The boxes on the
left show the information that is stored for the frames in the sliding window and the
boxes on the right show the individual processes which all operate asynchronously
in separate threads.

addresses this by having one thread produce asynchronous detections, while another

performs local feature based tracking (KLT), a third performs data association and

a fourth generates and optimises the output. The individual processes and the data

they operate on are represented as a block diagram in figure 5.2. This approach

ensures that the system is able to take full advantage of the processing time that is

available whilst providing guaranteed real-time performance.

A key feature of our work is the use of MCMC data association within a temporal

sliding window. The advantage of this approach is that at any instant in time the

system can report its current best estimate of all target trajectories, but these may

change either with more video evidence, or with further iterations. In particular this

gives the system the ability to cope with full occlusions for short periods of time.

5.2.1 Observations

To make the tracking algorithm robust to false detections, the data association and

location estimates are performed by considering all of the data within a sliding

window representing the most recent six seconds of video that has been received.
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Figure 5.3: A diagram showing the passage of frames through the sliding win-
dow. Small rectangles represent head detections and lines represent KLT motion
estimates. Captured frames enter the sliding window at one end and and spend a
total of six seconds in the sliding window before they pass out of the other end and
are deleted. Output for the frames is generated after they have been in the sliding
window for four seconds.

We obtain object detections using Dalal and Triggs’ HOG [29] detection algorithm

for which we trained a detector using head images rather than full body images.

Using a GPU implementation [99] of the HOG detector, detections are received at

intervals from approximately 200 milliseconds for 640×480 resolution video to 1200

milliseconds for 1920× 1080 video.

Since detections are received infrequently, motion estimates are necessary to

ensure that data associations can be made correctly. As in chapter 4, we make

motion estimates by following corner features with pyramidal Kanade-Lucas-Tomasi

(KLT) tracking [75, 22]. To provide robustness against KLT tracking failure, up to

four corner features are tracked both forwards and backwards in time from each

detection for up to s seconds, so between any sequential pair of detections there

will be relative location estimates in both directions. In practice we use a value of

four seconds for s to limit the processing requirements and because associations are

unlikely to be made for larger gaps. Figure 5.3 shows a 3D plot of the 2D image

observation coordinates against the frame time within the sliding window to show

how they can be linked together to form tracks. KLT tracking was chosen because
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it is more precise than alternatives such as mean-shift and because tracking multiple

corner features provides redundancy against tracking failures. For the purposes of of

data association, the motion estimates will be considered part of the detection from

which they originated so must be associated with the same target as a combined

unit.

5.2.2 Data Association

The purpose of the data association stage is to select a hypothesis Hi which di-

vides the set of detections D into disjoint subsets T1, T2 . . . TJ where each subset Tj

contains all of the detections corresponding to a single person. Figure 5.4 shows

an example frame with the corresponding image observations coloured according to

the track that the data association hypothesis assigned them to. Since not every

detection that occurs is a true positive, for each Tj we also attempt to infer the type

cj of the corresponding track. We use cj = cped to represent the property of Tj being

a genuine pedestrian track or cj = cfp if we believe Tj is a track of false positives,

which will be abbreviated to just cped and cfp. For more general situations, this

variable could be extended to represent a number of different moving object types

such as cars, bicycles, and trees, each of which would have an individual motion

model to facilitate classification.

Exhaustively evaluating the space of hypotheses is too slow even for small sets

of detections, so we use MCMC sampling to efficiently explore the space of data

associations by generating a sequence H0, H1, H2, . . . of sampled hypotheses. These

sampled hypotheses will be distributed according to their relative probabilities which

are defined by our likelihood function. The stochastic nature of MCMC helps to

prevent the search from becoming stuck at local maxima of the likelihood function.
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Figure 5.4: (requires colour) Views showing all of the head detections (small rect-
angles) and the corresponding KLT motion estimates (thin lines) within the sliding
window. The colours represent the tracks to which the observations have been as-
signed. The top image shows the observations projected onto the current frame,
the middle plot shows the data association hypothesis that has been made and the
bottom image shows the result without data association.
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Likelihood Function

Our likelihood function p(Hi) is proportional to the probability of Hi representing

the correct data associations and track types. In previous approaches, the likelihood

function has been estimated as a product of a number of terms based on specific

properties such as the length of tracks, velocity coherence, spatial overlap and the

number of detections considered to be false alarms. We take an approach based on

the Minimal Description Length (MDL) principle by attempting to find the hypoth-

esis which allows the most compact representation of the observed detections.

MDL was used by Leibe et al. [66] to arbitrate between different combinations of

tracks where the track likelihood functions included heuristics to encourage desirable

properties such as long tracks. Our objective function does not use any heuristics

and instead uses MDL to define every aspect of the objective function. The overall

objective function used by Leibe also consisted of components with arbitrary weights

applied to adjust their influence, so it did not correspond directly to the description

length of the observed data. We avoid the practice of using arbitrary weights or

costs for the encoding of values and instead assume that measurements are to be

encoded to the same level of accuracy regardless of the hypothesis, which depends

only on the probability density of the distribution used to encode them.

Being able to accurately estimate the likelihood of the data associations for a

target is particularly important when there are multiple targets being tracked. For a

single target, optimising the data associations using an objective function that is only

a monotonic function of the true data association likelihood will often lead to the

correct sequence being identified. With multiple targets, the likelihood of different

combinations of competing tracks must be compared. We can arbitrate between

two different combinations of tracks by taking the product of the individual track

likelihoods for each and choosing the largest. If we have only a monotonic function

of the individual track likelihoods, the product of the objective function across the

two sets of tracks will not necessarily result in the same order of preference, so could
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lead to the wrong combination being chosen.

The code length L required to encode both the data D and our hypothesis Hi

to a given accuracy is dependent on a corresponding likelihood function:

L(D|Hi) + L(Hi) = −log(p(D|Hi)p(Hi)) (5.1)

Although finding the hypothesis which minimises the description length is equivalent

to maximising the joint likelihood of the data and the hypothesis, the principles of

MDL guide the choice of likelihood function to one which allows observed variables

to be encoded efficiently.

First we consider the encoding of the hypothesisHi, which requires each detection

d to be assigned to a track and each track to be given a type label. The track

membership is most efficiently encoded when the prior over track membership has

a distribution where probabilities are proportional to the track lengths, resulting in

the following prior for Hi:

p(Hi) = J !
∏
Tj∈Hi

(
|Tj|
|D|

)|Tj |
p(cj) (5.2)

where p(cj) is a prior over the different track types and the notation |D| is used to

denote the cardinality of the set D. The factor of J ! arises because the ordering

of the subsets is not important, so the first detection in any track may be encoded

with any of up to J identifiers which have not already been used.

Detections genuinely from the same track are expected to be highly correlated

so can be efficiently encoded in terms of one another once divided into tracks. If a

detection genuinely belongs to a track, we expect the information saved by encoding

the detection as part of the track to be greater than the information required to

encode the track membership, so the overall description length will be reduced.

Next we break down the likelihood function into components representing each

track. Let djn be the nth detection in a track Tj, where the index n indicates only
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the order within the track:

p(D|Hi) =
∏
Tj∈Hi

p(dj1|cj) ∏
djn∈Tj\dj1

p(djn|d
j
n−1, cj)

 (5.3)

For each detection, we would like to encode the scale of the detection sn, the loca-

tion xn within the frame, and an approximation to the KLT motion mn. To ensure

equivalent behaviour over different scales, the location accuracy is measured relative

to the size of the object, so the units of xn are multiples of sn rather than pixels.

Ideally we would consider the coding of the KLT motion estimates too, but due to

the quantity of data this would have a negative impact on performance. Since the

magnitude of the KLT motion is important for distinguishing between true positive

and false positive detections, we instead approximate the motion by building a his-

togram mn from the magnitude of every frame-to-frame motion estimate originating

from detection n. The likelihood functions for individual detections are then broken

down into components representing these observed properties:

p(dj1|cj) = p(s1)p(x1)p(m1|cj) (5.4)

p(djn|d
j
n−1, cj) = p(sn|sn−1, cj)p(xn|xn−1, cj)p(mn|cj) (5.5)

Variables upon which the probabilities are conditional have been omitted where

independence is assumed.

Detection Scales The scale of the first detection in each track cannot be encoded

in terms of any preceding detection, so a global prior log-normal distribution with

mean µp and variance σ2
p is assumed:

ln s1 ∼ N(µp, σ
2
p) (5.6)
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The scales for the following detections in the track can then be encoded more effi-

ciently in terms of the previous scale:

ln
sn
sn−1

|cped ∼ N(0, δtσ
2
sp) (5.7)

ln
sn
sn−1

|cfp ∼ N(0, δtσ
2
sf ) (5.8)

where δt is the time difference between the frames in which the detections were

made.

Image Location A similar approach is used when considering the optimal method

for encoding the image location. It is assumed that the locations of both pedestrians

and false-positives are uniformly distributed around the image, so the probability

density of xn depends on the image area a relative to the object size in pixels:

p(x1) =
s2
k

a
(5.9)

For subsequent detections, the locations can be better explained in terms of the

preceding detections, however the way in which we do this depends on the track

type cj. For genuine pedestrians, we first make a prediction based on a constant

velocity model:

xp = xn−1 + δtvp (5.10)

Σp = δtΣv (5.11)

the velocity estimate vp comes from the result of the KLT tracking in the frames

immediately before and after the detection, by which point it is unlikely to have

failed. The error in the velocity due to unknown accelerations is modelled by the

parameter Σv. While the constant velocity model is an improvement on the uniform

prior, the error Σp is still large partly due to the cyclic gait motion and also because
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detections are infrequent and humans often change direction when in crowds. The

full KLT motion estimates generally provide much more accurate predictions, so

for each KLT motion estimate y we calculate a posterior distribution over locations

using a calculation equivalent to the update step of a Kalman filter:

xy = xn−1 + Σp(Σp + δtΣklt)
−1(xn−1 + y − xp) (5.12)

Σy = (I − Σp(Σp + δtΣklt)
−1)Σp (5.13)

The parameter Σklt represents the rate at which KLT feature tracking accumulates

random error and δt is the time difference between detections dn and dn−1. The

possibility that a tracked KLT feature fails completely is modelled using the pa-

rameter α, where 1 − αδt is the probability of failure after tracking for δt seconds.

The detection location is then encoded using a mixture of the prior and posterior

distributions:

xn|xn−1,y, cped ∼ αδt
1

|y|
∑
y∈y

N(xy,Σy + 2Σd) + (1 − αδt)N(xp,Σp + 2Σd) (5.14)

Some plots of the probability density that this equation predicts for the vertical

image location of a target over the following three seconds are shown in figure 5.5

to provide some insight into the properties of the individual components.

In the event that y is empty, α is set to 0 and the first term is omitted. The

additional uncertainty of 2Σd is included to model the error in the two detection

locations. Tracks consisting of repeated false-positives are usually caused by static

objects in the background so are assumed to be stationary:

xn|xn−1,y, cfp ∼ N(xn−1, 2Σd) (5.15)
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Figure 5.5: Plots of the log probability density for the location of one detection
relative to the previous one. The broad component corresponds to the constant
velocity prior, which represents approximately 5% of the total probability mass after
one second. The narrow bands come from KLT motion estimates which accumulate
error much more slowly. The left three plots only use one KLT feature and the right
three plots use four features. The bottom two plots show examples where the KLT
features have either been lost or not yet tracked for the full three second duration.
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Figure 5.6: Motion magnitude probability distributions for false positives (mfp) and
genuine pedestrians (mped) in the three scenes used for evaluation. The distributions
are the parameters to the multinomial distributions and were learned automatically.

Motion Magnitude The last observation considered is the motion magnitude

histogram. This is included only to help distinguish between false positives which are

expected to have no movement and true positives which are expected to move at least

a small amount, so the histogram has just four bins with boundaries representing

movement of 1
8
,1
4

and 1
2

pixels per frame. The histograms are expected to conform

to one of two multinomial distributions depending on the type of track:

mn|cped ∼Mult(mped) (5.16)

mn|cfp ∼Mult(mfp) (5.17)

The probability distributions that were learned for the three scenes used in the

evaluation are shown in figure 5.6 to demonstrate the effectiveness of the motion

magnitude for discriminating between false positives and genuine pedestrians.

Throughout this section the probability of each detection being in a track has

been calculated by considering only the immediately preceding and immediately

following detections. This approximation was made to ensure that the MCMC data

association can be performed efficiently, with each proposal requiring only a minimal

calculation. The optimisation of the joint probabilities is deferred to section 5.2.3.
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Sampling

There are three types of move which can be made during the sampling process; the

first two moves affect the state of the data association and the third has the potential

to change the type of a track. The first type of move involves randomly selecting

one detection and one track, and proposing that the chosen detection be moved to

the chosen track, as illustrated in figure 5.7. In the event that the track already

contains a detection from the same frame, both are swapped in the proposal. In

the second type of move we choose two tracks and a random time within the sliding

window and propose that all of the detections occurring after the time in both of

the tracks are swapped with those in the other.

Calculating the likelihood p(H∗) of the first proposal requires at most four eval-

uations of equation 5.5 and the second requires no more than two. The third move

type, in which a change of track type is proposed, requires the probability of every

detection in a single randomly chosen track to be re-evaluated. Fortunately this

third move type depends on just one track so does not need to be attempted as

frequently.

The Metropolis-Hastings acceptance function defines the likelihood with which

the proposal should be accepted:

p(Hi+1 ⇐ H∗) = min

(
p(H∗)q(Hi|H∗)
p(Hi)q(H∗|Hi)

, 1

)
(5.18)

In most cases the proposal density q will be the same for both the forward and

the reverse move, however there are some cases where it is not. Random tracks

for proposals are drawn from the set of existing tracks plus one additional empty

track. This empty track allows a new track to be created, and similarly either of the

two moves could leave one of the tracks empty, in which case it is destroyed. Since

only one empty track is retained, the creation or destruction of a track affects the

probability of the move being made.
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Move 1: Swap Move 2: Switch

Figure 5.7: Examples of the first two types of move used for MCMCDA. Only the
probabilities for pairwise associations with dotted lines need to be recalculated when
each move is proposed.

Although Metropolis-Hastings is good at overcoming local maxima of the likeli-

hood function, we prefer stable output rather than samples. To obtain stable output

we keep track of the most likely hypothesis since observations were last received and

output the local maximum, which is found by only accepting proposals that are

more likely than the current hypothesis for a short period of time.

Parameter Estimation

Some of the model parameters such as the detector covariance are likely to depend

on characteristics of the particular video sequence such as the level of image noise

and blur. In our system these are learned automatically using an approach based

on that of Ge and Collins [35] by interleaving the MCMCDA sampling with ad-

ditional Metropolis-Hastings updates of the parameters. Provided the parameters

are initialised to values allowing some tracks to be correctly associated, both the

parameter samples and the data association converge to a good maximum of the

likelihood function. Parameter updates take considerably longer than data associa-

tion updates because the log-likelihood must be recalculated for all of the data. In

a live system the parameters could be learned online over an hour or two. However,

since most datasets are too short for this, we slow down the video used for training
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so that there is enough time to learn the parameters.

5.2.3 Output Generation

The final stage is to generate estimates for the object location in each frame. First

we estimate the true image locations x̂n for all of the detections in each track:

p(T̂j) = p(x1|x̂1)p(x̂1)
∏

1<n≤N

p(xn|x̂n)p(x̂n|x̂n−1,y, cped) (5.19)

xn|x̂n ∼ N(x̂n,Σd) (5.20)

The term p(x̂n|x̂n−1,y, cped) is equivalent to equation 5.14 but without the 2Σd terms,

and p(x̂1) is equivalent to equation 5.9. Since multiple KLT estimates result in

multimodal probability distributions, we again optimise using Metropolis-Hastings

sampling.

Since detections do not occur in every frame, the location estimates for the other

frames are made by interpolating between detections. Interpolations are made by

averaging each of the relevant KLT motion estimates, weighted by the corresponding

contribution to the mixture in equation 5.14.

5.3 Evaluation

The purpose of our system is to provide stable head location estimates in surveillance

video, however there are no standard datasets for evaluating this so we use our own

video dataset of a busy town centre street. The video is high definition (1920×1080

at 25fps) and has ground truth consisting of 71500 hand labelled head locations,

with an average of sixteen people visible at any time. This video sequence with

the ground truth data and our tracking output has been made publicly available

to encourage future comparisons. For more information on this and other video

datasets, see section 2.6.1.
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5.3.1 Evaluation Criteria

Four measurements are used to evaluate the tracking performance. These use counts

of number of true positive nTP and false positive nFP estimations made by the

algorithm, the number of false negative regions nFN , and the number of identity

switches nID. An estimation is a true positive if it can be matched with a ground

truth region and a false positive if there is not corresponding ground truth region.

False negatives are ground truth regions that were not matches with any estimated

regions, and identity switches occur when either the estimated identity of a ground

truth track changes or when the tracker estimate assigns the same identity to two

different ground truth tracks.

The first two measurement types were proposed by the CLEAR evaluation project

[11]. Multiple Object Tracking Precision (MOTP) measures the precision with which

objects are located using the intersection of the ith detected region RD
i with the

ground truth region RGT
i :

mMOTP =
1

nTP

nTP∑
i=1

|RD
i ∩RGT

i |
|RD

i ∪RGT
i |

(5.21)

The modulus symbols are used here to denote the area of the union ∪ and intersection

∩. Since the CLEAR MOT metrics do not precisely define how to determine whether

two rectangles match, the requirement for body regions was |RD
i ∩ RGT

i | > 1
2
|RD

i ∪

RGT
i | as used by Stalder et al. [117]. Since head regions are significantly smaller,

the threshold ratio was reduced to 1
4

for a match to avoid errors in the ground truth

from skewing the results. Note that the effect of changing the threshold is fairly

neutral, since higher values result in more false negatives and lower values result in

more false positives.

Multiple Object Tracking Accuracy (MOTA) is a combined measure which takes
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into account false positives, false negatives and identity switches:

mMOTA = 1− nFP + nFN + nID
nTP + nFN

(5.22)

The second two performance measures are well established for object detection and

are included to enable comparisons with other work. The detection precision mea-

sures the ability of a system to return a high ratio of true positives to false positives:

mP =
nTP

nTP + nFP
(5.23)

Finally the recall measures the proportion of ground truth regions that were found:

mR =
nTP

nTP + nFN
(5.24)

5.3.2 Experiments

Since head regions are considerably smaller than full body boxes, any error in the

location estimates has a much more significant impact on the performance measures

than for the full body regions. For this reason the two should not be directly

compared, however to allow some comparison to be made with full-body trackers, we

also calculate the performance measures using full-body regions that are estimated

from the head locations using the camera calibration parameters and a known ground

plane. All experiments were performed on a desktop computer with a 2.4GHz quad-

core CPU with GPU 1 accelerated HOG detections and in real-time unless otherwise

stated. Although the model allows for multiple motion estimates per detection, for

the experiments only one was used because with the processing resources that were

available the cost of calculating multiple motion estimates outweighed the benefit.

The results for the town centre video are shown in table 5.1. Since the dataset

was only recently released, the tracker could only be compared with the Kalman

1An Nvidia GeForce GTX 295 card was used
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filter tracker from the previous chapter and baseline results from raw HOG head

and full body detections. The sliding window tracker improves the accuracy of the

head location estimates and has approximately double the MOTA of the Kalman

filter tracker. To demonstrate the benefits of two of the contributions made in this

chapter, experiments were performed with the KLT failure model and the separate

false-positive model each disabled. Both resulted in a significant reduction in the

MOTA and either the precision or recall.

We also examine the effect of adjusting the latency between when frames are

received and when output is generated for them (figure 5.8) because this is relevant

for many practical applications. Our results show that the drop in performance

when the latency is reduced to 1.5 seconds is small and below that the performance

degrades gracefully.

Some insight into the cause of most tracking failures can also be gained from

figure 5.9, which shows how tracking at lower speeds affects the performance. The

result is that although more frequent detections increase the recall, the precision

drops because there are more false positives. These false positives are the result of

incorrect head detections on other body parts such as shoulders or on bags and often

occur repeatedly in the same place as the pedestrian moves. A potential solution to

this problem would be to model the distribution of false positives relative to true

positives.

Although the system we describe was intended for the purpose of obtaining stable

image streams, we also demonstrate the general tracking performance by performing

a quantitative analysis on a standard test video from the i-Lids AVSS 2007 dataset.

The video is of a train station platform, has a resolution of 720 x 576 pixels at 25

fps and has 9718 labelled ground truth regions. Since the video includes distant

people that are too small for the head detector to detect, head detections were

interleaved with the standard full body HOG detector with a fixed offset to estimate

the head location. The covariance of the full body detector, which was also learned
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Method MOTP MOTA Prec Rec
H

ea
d

R
eg

io
n
s Our tracking 50.8% 45.4% 73.8% 71.0%

Our tracking without KLT model 50.9% 38.0% 72.9% 61.1%
Our tracking without FP model 51.2% 22.4% 59.5% 71.5 %
Kalman Filter 44.8% 22.5% 65.3% 48.1%
HOG head detections 45.8% - 35.0% 52.7%
HOG body detections 44.3% - 44.7% 39.3%

B
o
d
y

R
eg

io
n
s Our tracking 80.3% 61.3% 82.0% 79.0%

Our tracking without KLT model 80.2% 53.5% 82.2% 68.9%
Our tracking without FP model 80.2% 41.2% 67.4% 81.0%
Kalman Filter 76.2% 58.6% 90.1% 66.2%
HOG head detections 76.1% - 49.4% 74.5%
HOG body detections 72.7% - 82.4% 72.3%

Table 5.1: Tracking performance on the town centre sequence compared to the
Kalman filter based tracker with baseline estimates using raw HOG head and full
body detections, and results for our tracking system with the KLT failure model or
false-positive (FP) model disabled. Body regions from the HOG detector were con-
verted to head regions using a fixed offset and head regions were converted to body
regions using the camera calibration. MOTA takes into account identity switches so
cannot be calculated without data association. The HOG detectors were applied to
every video frame, which is approximately ten times too slow to run in real-time.
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Figure 5.8: Reducing the latency introduced between frames arriving and their
output being generated causes the recall to decrease. Performance measures are for
head regions.
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Figure 5.9: A graph showing the effect of slowing down the system so that more time
is available for processing the video. Performance measures are for head regions.

automatically, is large enough to have little influence when the head detector worked

but could maintain the track when it did not. Table 5.2 compares our results with

those of two recent state-of-the-art systems, both of which are unable to process

video in real-time.

Our implementation continually optimises the data association hypothesis, but

to measure the efficiency an experiment was conducted where the data association

was disabled until the six second sliding window had been filled with data. The

data association was then enabled and the result used to analyse the performance

in a controlled situation, the results of which are shown in figure 5.10. The optimi-

sation converges after approximately 200 milliseconds, which is only 3% of the time

taken to accumulate the data. Although our system continually optimises the data

association, the purpose is to immediately incorporate new observations, and these

results show that considerably less processing time is actually required.

An unexpected benefit of using MDL to model the hypothesis likelihoods is that

the system can cope with total failures of the KLT tracking and HOG detections

for short periods of time, which often occurs when an individual is fully occluded.

Some examples from the Town Centre and i-Lids datasets are shown in figure 5.11.

Despite no explicit planning for these circumstances, the tracks continue through the
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Figure 5.10: Graphs showing properties of the MCMC optimisation when applied
to unassociated data. The left graph shows the acceptance rate for proposals and
the right graph shows the total log-likelihood. The total of 570000 proposals took
one second to evaluate, of which approximately 200ms was required for the mode to
be reached.

Method MOTP MOTA Prec Rec

Ours 73.6% 59.9% 80.3% 82.0%
Breitenstein et al. 67.0% 78.1% - 83.6%
Stalder et al. - - 89.4% 53.3%

Table 5.2: Tracking performance of our system compared to that of Breitenstein
et al. [18] and Stalder et al. [117]. Results are shown for full body regions on
the i-Lids AB Easy sequence using both the CLEAR MOT metrics and standard
detection precision and recall.

occlusions with paths interpolated according to the motion priors from the closest

observations before and after.

In addition to these datasets, figure 5.12 also shows qualitative results on the

PETS 2007 videos, for which we do not have ground truth data, to demonstrate the

ability of the system to cope with dense crowds of people. Some sample sequences

of cropped head images are shown in figure 5.13 to demonstrate the stability of the

tracking.
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Figure 5.11: Sample video frames from the i-Lids dataset (top), and the town centre
dataset (bottom). The two sequences demonstrate the ability of the system to deal
with temporary occlusions, caused by the pillar in the i-Lids video and by a pigeon in
the town centre video. The bottom rows show examples of the stable head sequences
that result from the tracking.
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Figure 5.12: Tracking results from the PETS 2007 dataset. Using the head as the
point of reference allows most of the people in the crowd to be tracked even though
they occlude one another. The false negatives at the top are caused by the heads
being too small; this could easily be resolved by using higher resolution video.

Figure 5.13: Examples of the stable head sequences that result from the tracking.
The head remains well centred in the image which is critical for good classification
performance.
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5.4 Conclusion

This chapter has described the development of a scalable real-time system for ob-

taining stable head images from pedestrians in high definition surveillance video.

A number of contributions were made, primarily to address the issues that were

encountered with the tracking system of chapter 4:

• A principled objective function was developed, allowing accurate location esti-

mates and robust data associations to be made, including the ability to track

through total occlusions.

• A new move type for MCMCDA was introduced to allow the removal of false

positives, which could be also extended to identify different object types.

• An efficient and scalable multi-threaded architecture was proposed to allow

large crowds of pedestrians to be tracked in real-time.

The use of MCMCDA makes the system robust to occlusions and allows false

positive detections in the background to be identified and removed. The system

has many potential applications in activity recognition and remote biometric anal-

ysis or could be used to provide close-up head images for a human observer. The

experiments performed show that the efficient approach provides general tracking

performance comparable to that of state-of-the-art offline tracking systems, whilst

being advantageous in terms of speed and tracker stability.

The MCMCDA based tracker is not only able to deliver more accurate head

regions than the Kalman filter based tracker, but is able to provide them for 71% of

targets rather than 48% while achieving real-time performance. Although the error

in the head locations has been reduced, it has not been removed completely. The

next chapter addresses the problem by making a gaze classifier that is more robust

to the remaining error.
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CHAPTER6

Unsupervised Coarse Gaze

Direction Estimation

In this chapter a method is presented for learning a coarse gaze direction

classifier using the output from an automatic tracking system without any

hand labelled image data. A Conditional Random Field is used to model

the interactions between the head motion, walking direction, and appear-

ance to recover the gaze directions and simultaneously train randomised

decision trees. The resulting direction estimations outperform conven-

tionally trained classifiers on two large surveillance datasets. A paper

based on the research described in this chapter was published at ICCV

2011.
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6.1 Introduction

The previous chapter addressed the problem of misaligned head regions, with the

resulting sliding window based tracking algorithm giving a significant improvement

over the previous feed-forward approach. The research presented in this chapter was

motivated by the need to provide invariance to the remaining head location error,

but also by some other observations that were made in chapter 4.

One of the experiments from section 4.3.5 examined the possibility of making

classifiers more robust to location error by introducing random noise into the head

locations of the training data. The result was that each classifier performed best

when the noise in the test data was approximately the same as that introduced

during training, but when the test data had less noise than the training data the

performance was reduced. In particular, with no noise in the test data, training with

noise in the head locations considerably lowered the performance. Unless we could

accurately determine the amount of error in the head location for an unknown video

sequence, the method would be of little value.

A second observation comes from the experiments in section 4.3.5 where classi-

fiers were tested and trained on the same datasets (more extensive results can be

found in appendix 8.2). In all of the video datasets, every classifier performed con-

siderably better if the training and testing data were taken from the same dataset.

Again, these were unrealistic scenarios because we cannot expect to have a custom

hand-labelled training dataset for every surveillance installation.

In both cases, the potential benefit could not be realised in any genuine instal-

lation because the cost of the human input required to customise the system for

the particular environment would be prohibitively expensive. Most of the existing

approaches that were reviewed in chapter 2 do not recognise this, and include either

the same people or the same scenes in both training and test datasets. There is

however a way to avoid the problem altogether, which is to develop a method for

estimating gaze directions that does not require any hand labelled training data at
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Figure 6.1: Randomly chosen sequences from the two video datasets. The sequences
demonstrate the problems of image blur, tracking failures, incorrect detections and
unusual appearances caused by clothing such as hats.

all.

Problem Statement: The objective of the research presented in this chapter

is to develop a system that can take as input a video sequence and output gaze

direction estimates for all of the pedestrians in every frame of the video. In contrast

to the system in chapter 4, the aim here is to avoid any manual labelling of training

images and instead learn an appearance model for gaze directions automatically

from the input video sequence without any manual intervention.

This chapter examines the possibility of learning to estimate gaze directions in

an unsupervised manner using the output of the automatic tracking systems such

as those described in chapters 4 and 5. By tracking pedestrians in a scene for an

extended period of time, we can have some confidence that we will have acquired

head images representing the full 360◦ range of gaze directions. Furthermore we also

note that people tend to look in their direction of motion. The combination of these

two factors yields the potential to automatically acquire a very large set of weakly

labelled data without human intervention.

Estimating gaze directions in unconstrained environments is difficult because of

the many variables affecting the appearance of an individual, which are illustrated in
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figure 6.1. Facial structure, hair style and colour, skin colour, blurry images, lighting

conditions and accessories such as hats and sunglasses contribute to large variations

in the appearance of different people looking in the same direction compared with

potentially subtle differences between the appearance of the same person looking

in different directions. Automatically acquired training sets have the potential to

be many orders of magnitude larger than manually labelled ones, so can provide

examples covering far more combinations of these variables.

Such training sets also have the potential to yield classifiers customised to the

specific conditions of a particular installation, such as the viewpoint, focus and

lighting conditions which would be difficult to train for explicitly. Provided the

same tracking algorithm is used to acquire all of the head images, we can expect the

head location error to be the same during training and testing which we know to be

beneficial.

The drawback of using automatically acquired training data is that we do not

know the true gaze direction for any of the images, so they must be inferred. The

inference method described in this chapter is based around a Conditional Random

Field (CRF) which models different aspects of gaze behaviour, such as the tendency

for pedestrians to look in their direction of travel. When applied to a dataset, the

CRF automatically infers the gaze directions for the images and as a side effect

also trains a forest of randomised tree classifiers. The randomised forest models

the interaction between the head images and the gaze direction variables within the

CRF, but once trained can also be used as a standalone gaze classifier without the

CRF.

Datasets acquired from two different scenarios were used to evaluate the idea.

The first was the Town Centre video which was processed using the tracker from

chapter 4 to yield a dataset comprising 473412 images from 2258 people. The second

dataset was acquired by applying the sliding window tracker from chapter 5 to a

different video covering a busy transport terminal, and consists of 639581 images
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Figure 6.2: An explanation of factor graph notation for representing CRFs. Ob-
served variables are represented by circular nodes with shaded backgrounds (a) and
latent variables are unshaded circles such as that shown in (b). Factors are plain
black squares (c) and are connected with edges to two or more variable nodes with
edges, where the edges show which variables are used by the factor function. An
example factor graph is shown in (d).

from 3861 people. The different tracking systems were used because the first dataset

was acquired and labelled with ground truth before the development of the improved

tracking system. The datasets consist of image windows averaging 24× 26 pixels in

size representing putative head regions, and for each image the tracker also provides

an instantaneous ground plane velocity estimate for the corresponding pedestrian.

The method for learning a classifier that we describe is weakly supervised when

considered in isolation, however the weak supervision consists of the direction of

motion from an unsupervised tracking system. When considered in combination with

the tracking system, our approach is fully unsupervised. In the context of learning,

our system has some similarities to that of Leistner et al [67], who used multiple

instance learning with randomised trees to classify object images into categories.

As a result of participation in a study of human gaze behaviour, a large amount

of hand labelled ground-plane velocities and gaze directions were available. We used

this data, which we will refer to as the model data, to infer some of the general

parameters for our gaze behaviour model. The data did not include any image data

so the parameters are expected to generalise to any video sequence.

6.1.1 Conditional Random Fields

The inference of gaze directions in this chapter is based around a CRF model. CRFs

were originally proposed by Lafferty et al. [60] and are a type of undirected graphical
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Figure 6.3: Diagrams illustrating the calculation of messages to and from variables
and factors. In the left diagram, the factor node combines messages from three
variable nodes and sends the result to the fourth. Similarly, in the right diagram
the variable node combines messages from three factor nodes and sends the result
to the fourth.

model. In this chapter the CRF is represented as a factor graph, which is bipartite

with one set of vertices corresponding to variables and the other set of vertices

corresponding to factors. Edges in the graph represent the variables that affect the

outcome of each factor function. The notation is briefly explained in figure 6.2.

The main difference between CRFs and Markov Random Fields (MRFs) is the

function that is modelled. A MRF typically models the joint distribution P (X, Y ) of

the observationsX and the latent variables Y , whereas a CRF models the conditional

distribution P (X|Y ). Modelling the conditional distribution is preferable because

there is no need to model the prior distribution over the observations.

6.1.2 CRF Inference

To infer the latent variables in the CRF, a combination of Expectation Maximisation

(EM) and Loopy Belief Propagation (LBP) was used. EM was originally formalised

by Dempster et al. [30] and is well established in computer vision. The reader is

referred to Bishop [13] for more details.

Loopy Belief Propagation Belief propagation [98], also known as the sum-

product algorithm, is a method for maximising the overall likelihood of the variable
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values in a graphical model. When applied to a tree or chain structured graph, the

method is guaranteed to result in the optimal solution. The algorithm is known

as Loopy Belief Propagation (LBP) when applied to graphs with cycles and in this

case the solution is not guaranteed to be optimal, however in practice it usually

yields a good solution. The following overview is loosely based on the description

by Kschischang et al. [58], to which the reader is referred for more details.

LBP works by calculating messages to be sent along each of the edges to or from

a variable, where each message represents the current probability estimate for the

variable from the part of the graph where the message originates. Messages can be

categorised into two types depending on whether they are sent from variable nodes

to factor nodes or from factor nodes to variable nodes, as illustrated in figure 6.3.

Let y represent a variable and fi be one of nf factors connected to y. The message

from y to f1 is the product of the messages to y from the other factors:

µy→f1(y) =

nf∏
i=2

µfi→y(y) (6.1)

Here the messages both to and from y are distributions over the random variable y,

so the calculation is fairly simple. The messages from factors to variables are more

complex because they require the factor function ψ to be evaluated. The messages to

and from factors are also distributions, but typically over different random variables.

If yi is one of the ny variables connected to factor f , the message to y1 is the result

of marginalising over the other variables:

µf→y1(y1) =
∑
y2

. . .
∑
yny

(
ψ(y1 . . . yny)

ny∏
i=2

µyi→f (yi)

)
(6.2)

For chain structured graphs, it is usually only necessary for each message to be sent

once, provided they are sent in the correct order. When loops are present, messages

are usually evaluated multiple times until the distributions converge.
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Figure 6.4: The distribution of gaze direction relative to walking direction over all
people (top) and eight individual people (bottom) taken from the model data.

6.2 Model Formulation

The observations used as input to our system consist of a set of head image sequences

I = {ix} where every head image has a corresponding movement direction and

magnitude vt representing the individual’s ground plane velocity. There are three

key properties of the tracked images that we harness to infer the gaze directions.

The first is that people tend to look most frequently in their direction of travel, an
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Figure 6.5: The distribution of head angular velocity relative to the walking direction
over all of the people in the model data.
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Figure 6.6: A factor graph showing how cliques and variables interact in the CRF.
The angle estimate at time t is represented by θt, the angular velocity between times
t and t+1 is represented by ωt, and the observed image information and walking
velocity are represented by it and vt respectively. Variable nodes are shaded if they
are observed and unshaded if they are latent.
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Figure 6.7: The four factor types that are used in the CRF, each shown with the
variables they interact with and the corresponding factor function.

intuition which is confirmed by the histogram in figure 6.4 which shows that the

distribution of gaze directions relative to walking directions in the model data has

an approximately normal distribution with the mean at zero. The second property is

that people usually move their heads slowly, so we expect sequential gaze directions

to be reasonably similar. Again, this is confirmed by the model data in figure 6.5,

which shows that the distribution of angular velocities has a strong peak at zero.

Lastly, we expect the appearance of people to be more similar when they are looking

in the same direction compared to when they are not.

The overall estimation is based around the optimisation of a CRF, the structure
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Figure 6.8: The three components of the mixture model used to represent the angular
velocity. The probability distribution of an angular velocity variable ωt is represented
as a mixture wt of these three components.

of which is represented as a factor graph in figure 6.6. Using the clique template

representation of Sutton and McCallum [121], we divide the factors ψc into four sets

C = {CT , CF , Cω, CI} depending on which random variables they combine, as shown

in figure 6.7. The overall conditional probability is represented as the product of the

individual factor functions:

p(θ,ω|i,v) =
1

Z(x)

∏
Cp∈C

∏
ψc∈Cp

ψc(ic,vc,θc,ωc) (6.3)

The function Z(x) represents a normalising constant which is required to ensure

that the distribution sums to one given the observed image i and velocity v. The

labels, which consist of the estimated gaze directions θt and angular velocities ωt,

are both discretised to allow efficient inference. Gaze directions are represented as

a distribution over 32 bins each representing an 11.25 degree range of angles.

The probability distribution for the angular velocity ωt is represented as a vector

of three weights wt = (w+,w0,w−)T which define a mixture of the three components

shown in figure 6.8.

The first component is a Gaussian to represent the peak in the centre of the

distribution corresponding to no head rotation. The other two components are
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log-Gaussians to represent rotations in the positive and negative directions. We

determined the parameters for these three components from the model data using

Expectation Maximisation.

The following sections will define how the four types of factor function model

the interactions between random variables.

6.2.1 Angular Velocity Factors

We begin by defining the factor representing transitions between angular velocities.

The component weights wt for the distribution over ωt are expected to be correlated

with those for ωt+1 because head movements usually last for more than one frame.

The 3×3 matrix A represents the expected angular acceleration of the head in terms

of the component weights, so we can predict wt+1 from wt, resulting in the following

factor function definition:

ψc(ω
t, ωt+1) ∝ P (ωt+1|ωt) (6.4)

∝ (wt)TAwt+1 (6.5)

Element j, k of A represents the probability of mixture component k representing

ωt+1 if component j represents ωt. The elements of A were estimated from the model

data.

The angular velocity factors model the tendency for head movements to be spread

over a number of frames. Since head movements are relatively rare, when an indi-

vidual does move their head, they tend to move for more than one frame. If the

frame-to-frame state transitions were modelled as being independent, as in an HMM,

the probability of large head movements lasting multiple frames would be signifi-

cantly underestimated. The angular acceleration factors resolve this problem by

modelling the second order interactions.
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Figure 6.9: Examples showing the difference between standard trees and ferns and
the hybrid structure that was used. A fern is shown in (a), a standard tree in (b)
and our hybrid in (c). The hybrid has leaves at different depths like a tree, but has
the same branch tests at every depth like a fern.

6.2.2 Image Classification Factors

The next factor is that which relates head images to directions. Initially we do not

have any information on the mapping between images and gaze directions, however

we do know that similar images are more likely to represent the same direction. This

property is modelled using a forest of randomised tree classifiers, with each leaf node

containing a histogram over the 32 direction bins, initially representing a uniform

distribution. The histograms are scene-specific parameters that are inferred during

the automatic learning process.

The randomised trees are a slight modification of the standard construction, and

represent a mid-point between randomised trees and randomised ferns, as illustrated

in figure 6.9. Since the true labels for images are not known in advance, the branch

tests are selected at random, but all branch tests at the same depth are made equal.

This gives the trees some of the performance advantages of ferns, because the same

branch tests are made for all images and only one test needs to be stored for each

depth in the tree. Since trees only expand leaves containing data, the advantages

of trees in terms of storage requirements are retained, which allows training to a

greater depth than would be possible with ferns. Branches are split until there are

fewer than one hundred examples in each leaf node. One further advantage of the
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hybrid trees is discussed briefly in the conclusion at the end of the chapter.

A total of forty trees were trained using the HOG and CTC features described in

section 4.3.2, with the factor function averaging over all of the histograms to obtain

the required probability estimate:

ψc(θ
t, it) =

1

n

n∑
k=1

P (θt|Dk(it)) (6.6)

The notation Dk(it) is used to represent the branch outcomes from passing it down

the kth tree in the forest, from which the conditional probability is estimated using

the histogram at the corresponding leaf. The class histograms for the leaf nodes in

the trees, which we will represent as H, are scene-specific model parameters that are

automatically inferred. The histograms were all initialised to represent a uniform

distribution over the classes before the first iteration.

Randomised tree classifiers were chosen over other types of classifier because

they require very little time to retrain if the image data remains the same and only

the corresponding class distributions change. They also have a direct probabilistic

representation, so do not require a mapping function to be learned as with other

types of classifier such as SVMs.

6.2.3 Changing Image Factors

The next type of factor is intended to represent the correlation between the gaze

direction changing and the observed image changing. Although a wide variety of ap-

pearances could represent the same gaze direction, as modelled by the classification

factors, a particular person looking in the same direction should have a relatively

consistent appearance over short time periods (e.g. a fraction of a second) because

the variables affecting their appearance are unlikely to have changed.

The distance between two head images d(it, it+1) is measured as the number of

randomised trees in which the two images reached different leaves, if δ represents
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the Kronecker delta function then this is defined as:

d(it, it+1) =
n∑
k=1

δ(Dk(it), Dk(it+1)) (6.7)

The vector φ of length n+1 represents the expected weight on the stationary angular

velocity component for each number of trees where the leaves reached differ, so

φd(it,it+1) is the probability that ωt will be represented by the stationary mixture

component, and 1 − φd(it,it+1) is the probability that ωt will be represented by one

of the two moving components. The probabilities for the moving components are

assumed to be equal so are not modelled separately. This results in the following

factor definition:

ψc(ω
t, it, it+1) = P (ωt|it, it+1) (6.8)

∝ w0φd(it,it+1) + (1− w0)

(
1− φd(it,it+1)

2

)
(6.9)

The elements of φ are scene-specific parameters that are learned automatically and

w0 is the element of wt corresponding to the probability of ωt being represented by

the stationary component.

6.2.4 Head Motion Factors

Lastly we describe the factors CT which cover the transitions between pairs of gaze

directions. The factor function is defined in terms of a prior transition matrix T and

a matrix of angular velocity marginals M :

ψc(θ
t, θt+1, vt, vt+1, ωt) ∝ P (θt+1|θt, vt, vt+1, ωt) (6.10)

∝ (θ∗t)T(T ⊕M)θ∗t+1 (6.11)

The operator ⊕ is used here to denote the element-wise product of two matrices

and θ∗t represents the vector θt rotated so that it is measured relative to vt. M is
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a cyclic matrix where elements mij represent the probability of the angular velocity

required to transition from state i to state j given the estimated angular velocity

parameters ωt.

The matrix T represents our prior knowledge of how the gaze direction should

change between each pair of frames. Many of the elements in T could be learned

from the observations, however some of the elements represent transitions that are

expected to occur very infrequently, such as rapid head movements or transitions

between backward facing directions. These elements would be impractical to esti-

mate empirically. To avoid estimating all 322 elements of T directly, the number

of degrees of freedom was reduced by parameterising T , as described in the follow-

ing section, before fitting to the transitions in the model data using a constrained

optimisation.

In the event that either vt or vt+1 has a magnitude of less than half the mean

human walking speed (0.7ms−1 ), the walking direction is considered to be unreliable

and the head motion factor is evaluated in the absolute frame of reference. This

differs from equation 6.11 in that θt and θt+1 are used rather than the relative

versions and a small modification is made to the steady state for T , which will be

described in the next section.

Transition Matrix Parameterisation

From any state, we represent the probability of travelling to a destination state as

a mixture z of the three components illustrated in figure 6.8. It is these mixture

coefficients on the three components of the velocity distribution that constitute the

parameterisation.

When an individual is facing their direction of travel, there is an equal proba-

bility that they will move their gaze direction to the left or to the right, however

if they are already looking sideways it is more likely that they will move their gaze

direction towards the direction of travel. This observation has been previously used
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to aid high resolution head tracking [45]. We model this by allowing the weights for

the three components to vary depending on the current angle of the head, so the

parameterisation consists of three vectors of n weights z+, z0 and z− corresponding

to positive, stationary and negative rotation probabilities respectively. Each of the

three components were quantised to give a probability distribution q over discrete

states so that the members of T could be easily calculated efficiently:

tij = z+
i q

+
j−i (mod n) + z−i q

−
j−i (mod n) + z0

i q
0
j−i (mod n) (6.12)

The values for the weights are optimised to ensure that they represent a transition

matrix that is consistent with both the prior angular velocity mixture weights wt
pr

and some general properties of head motion, both of which were learned from the

hand labelled motion data. Specifically, the following constraints must be met for a

transition matrix to be valid:

Total Weight To ensure that the probability mass represented by the velocity

distribution sums to one, each set of three component weights must total one:

CΣ
i (z) = z+

i + z0
i + z−i − 1 = 0 (6.13)

Positive Weights To prevent negative transition probabilities, inequality con-

straints must be added to ensure that each of the 3n component weights are not

negative:

Cp+

i (z) = max(−z+
i , 0) = 0 (6.14)

Cp0

i (z) = max(−z0
i , 0) = 0 (6.15)

Cp−

i (z) = max(−z−i , 0) = 0 (6.16)
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Steady State The gaze directions of pedestrians are highly correlated with their

walking directions, since people tend to look in their direction of travel and rarely

look behind themselves. The gaze distribution of an individual observed for long

enough should tend towards the distribution s shown in figure 6.4. We expect the

transition matrix to satisfy this condition if s is its steady state:

TTs = s (6.17)

To enforce the steady state distribution, constraints were introduced with the fol-

lowing form:

CS
i (z) =

∑
j tjisj

si
− 1 = 0 (6.18)

If an individual is not walking and the motion factor is evaluated in the absolute

frame of reference, s is set to be uniform to reflect the lack of prior knowledge on

potential gaze directions.

The reason for incorporating the prior in this way is to avoid imposing any

preference on the overall distribution of gaze directions for an individual. Although

we expect the gaze direction to converge on s when an individual is observed over

a long period of time, we only observe people over relatively short intervals, so

we do not expect an individual’s gaze distribution to resemble s over the time for

which they are observed. The distribution s and some individual gaze direction

distributions are shown in figure 6.4.

Objective Function The requirements above constrain 2n degrees of freedom,

however z has 3n variables. A constraint on the relative values of z0
i could be

introduced to provide an additional n − 1 constraints, but doing so would make it

often impossible to satisfy all of the constraints. Instead, an objective function was

used to regularise the solution by imposing the preference of having the weights for
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each state equal to the angular velocity mixture weight priors:

f(z) = −
∑
i

(z−i − w−pr)
2 + (z0

i − w0
pr)

2 + (z+
i − w+

pr)
2 (6.19)

Although we do not expect the weights to be equal to the mean, they are expected

to deviate by only a small amount. In practice this regularisation guides the optimi-

sation towards the solution that we require; without it the optimisation sometimes

finds undesirable solutions. These solutions satisfy the constraints but have unreal-

istic properties such as requiring the head to constantly spin in one direction whilst

slowing down for forwards facing directions to maintain the steady state distribution.

Transition Matrix Optimisation

To find the optimal parameter values for the matrix T , the constraints were com-

bined with the objective function using the quadratic penalty method [88]. Every

constraint introduces a penalty term which is zero when satisfied.

F (z;µ) = f(z)− 1

2µ

∑
i

(
CΣ
i (z)2 +CS

i (z)2 +Cp+

i (z)2 +Cp0

i (z)2 +Cp−

i (z)2
)

(6.20)

Although the constraints have the same quadratic form as the objective function,

the parameter µ is reduced during the optimisation to make the penalty functions

dominate over the objective function to ensure that the constraints are satisfied. The

objective function has discontinuous second derivatives resulting from the inequality

constraints, so the method of nonlinear conjugate gradients was used to perform the

optimisation instead of a Newton-based method. The following equations show the

general form of the derivatives:

∂F

∂z−k
= −2(z−k − w−pr)−

1

µ

((
z−k + z0

k + z+
k − 1

)
+
∑
i

(
q−i−ksk

si

)(∑
j tjisj

si
− 1

)
+ max(−z−k , 0)

)
(6.21)
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∂F

∂z0
k

= −2(z0
k − w0

pr)−
1

µ

((
z−k + z0

k + z+
k − 1

)
+
∑
i

(
q0
i−ksk

si

)(∑
j tjisj

si
− 1

)
+ max(−z0

k, 0)

)
(6.22)

∂F

∂z+
k

= −2(z+
k − w+

pr)−
1

µ

((
z−k + z0

k + z+
k − 1

)
+
∑
i

(
q+
i−ksk

si

)(∑
j tjisj

si
− 1

)
+ max(−z+

k , 0)

)
(6.23)

6.3 Model Optimisation

Having described the structure of the individual factor functions, we now consider

the optimisation of the scene-specific parameters φ andH and also distributions over

θ and ω, which we consider to be latent variables for the purpose of learning the

scene parameters. The learning uses the EM algorithm, which alternates between

calculating an expectation over the latent variables and maximising the parameters

given the expectation. The method is equivalent to the use of the Baum-Welch

algorithm to optimise HMM parameters.

Expectation The first step requires the calculation of P (θ,ω|φt,Ht,v, i), which

is the expected distribution over the latent variables given the parameter estimate

and the observations at iteration t. Since our CRF contains cycles the expectation

cannot be calculated exactly in any reasonable amount of time, so we approximate

it using Loopy Belief Propagation (LBP), for which a brief overview can be found

in section 6.1.2. Our CRF is chain-structured, so we use a message passing schedule

which propagates messages in alternating forwards and backwards passes in a similar

way to the Forwards-Backwards algorithm for HMMs. The CRF has disconnected

components corresponding to each of the people in the dataset, so LBP was applied

to each individually.
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Figure 6.10: Sample frames from the two scenes on which the system was tested.
The frame on the left is from the Town Centre video, to which tracking was applied
to create head image dataset C. Most people in this dataset are moving but in the
second dataset most people are stationary. The image on the right is a frame from
the Transport Terminal video, which was tracked to create head image dataset E.
The Transport Terminal video also exhibits significant distortion, which we train for
implicitly.

Maximisation In the maximisation step the probability histograms H in the

leaves of the randomised trees and the vector φ of motion probabilities from the

image difference factors are both updated:

{φt+1,Ht+1} = argmax
φ,H

∑
θ,ω

P (θ,ω|φt,Ht,v, i) logP (θ,ω,φ,H|v, i) (6.24)

The parameters in φ and H are conditionally independent given θ and ω so can be

calculated separately. The leaf histograms are maximised when they are equal to the

mean of the expected gaze directions for all of the images reaching the leaf, which

is the standard training process for trees. The motion probabilities are maximised

by marginalising over the factors for all pairs of images in the dataset.

6.4 Evaluation

The system was evaluated on the tracking output from two large video sequences of

different scenes, shown in figure 6.10. Both scenes are public places where pedes-

trians exhibit a wide variety of appearances due to hats, sunglasses and different

clothing. The mean size of the head images in both cases was 24× 26 pixels.
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Test Dataset
Method Town Centre Terminal

Our Unsupervised System 23.9 38.5
Supervised Ferns (chapter 4) 45.5 59.2
Walking Direction 25.9 78.4

Table 6.1: Gaze estimation performance (MAAE in degrees) of our unsupervised
system compared with that of conventionally trained classifiers and the walking
direction baseline. Our system outperforms the other approaches on both datasets.

The first dataset (Dataset C in section 2.6.2) is from an outdoor town centre

scene where the majority of pedestrians are walking and consists of 473412 images

from 2259 people. Every one hundredth image in the dataset was hand labelled to

provide ground truth, a total of 4347 images. This sequence is publicly available

and the images with ground truth are available to enable future comparisons. The

second dataset (Dataset E) covers a busy transport terminal where the majority of

people are stationary and consists of 639581 images from 3861 people.

The performance of the system was measured using the Mean Absolute Angular

Error (MAAE), which is stated in degrees. A baseline performance measure was

obtained by assuming that the gaze direction is the same as the walking direction.

This baseline provides very good estimates for the Town Centre dataset, since most

people look in their direction of travel, however in the Transport Terminal dataset

there are many stationary people so the direction of travel is often incorrect.

The system was also compared with the HOG/CTC ferns that were developed

in chapter 4, which were trained using 1500 head images that were cropped from

still photos of different people (Dataset A). The results from the HOG/CTC ferns

make use of the HMM filtering, but do not take the walking direction into account.

The results of applying the system to the two large video datasets are shown

in table 6.1. In both datasets, our system significantly outperforms the supervised

ferns, which demonstrates the value of learning the scene-specific classifier and using

the walking direction in the gaze direction model. Since most people in the Town
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Method
Training
Dataset

Testing Dataset
Town Centre Terminal Still Images

(C) (E) (A)

Unsupervised Trees Town Centre 25.6 47.8 60.2
Unsupervised Trees Terminal 64.9 42.9 71.4
Supervised Ferns Still Images 45.5 59.2 43.5

Table 6.2: Comparison of the performance (MAAE in degrees) of the learned forest
of randomised tree classifiers when trained and tested on the two video datasets
and the still image dataset. For these experiments the CRF model was not used for
testing. When the supervised ferns were tested on the still images (dataset A), 80%
of the data was used for training and the remaining 20% for testing. The results
show that the learned classifiers still outperform the supervised ferns even in the
absence of motion information.

Centre dataset look in their direction of travel, there is not much to be learned, so

we only marginally outperform the walking direction baseline. In the Transport Ter-

minal dataset there are many stationary people so our system performs considerably

better than the walking direction baseline, which is almost random.

Although one of the benefits of the unsupervised learning approach is the ability

to learn scene-specific classifiers, to provide some additional insight the learned ran-

domised forests were tested in isolation (without the CRF) on each of the two video

datasets as well as the still images that were used to train the supervised classifier.

It should be noted that this is not the intended usage of the system, since for any

practical purpose the combination of the CRF model and the learned trees would

be used rather than just the trees alone.

The results from testing the randomised forest in isolation are shown in table 6.2.

An important conclusion from these results is that we can use the walking direction

to learn a randomised forest classifier, but the classifier remains effective even when

the walking direction is not used in the estimation at testing time.

In the absence of the CRF model, the randomised forests that were learned

from the Town Centre and Transport Terminal datasets each perform best on the

dataset from which they were learned, however the Town Centre forest appears to
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generalise better and is more accurate when tested on the still image dataset. A

likely reason for this is that although both video datasets are large, most of the

information for learning the classifiers comes from people who are walking. The

Town Centre dataset has 441048 images from moving people, compared to only

69512 images from moving people in the Transport Terminal dataset. Many of these

images will be similar, since we acquire around 200 images from each person, making

approximately 420 different informative people in the Transport Terminal dataset in

comparison to approximately 2100 in the Town Centre dataset. It is likely that this

variation in appearances during training is responsible for the better performance of

the Town Centre classifier, however this is not a limitation of the approach in general

because a deployed system would be able to constantly improve the classifier over

many days or years by continuously refining the φ and H parameters.

Many of the errors in the Transport Terminal dataset were caused because people

often walk backwards to improve their view of the departure board. Since the data

that was used to learn the model parameters did not include situations like this, our

model considers this to be almost impossible. The result is that an incorrect gaze

estimate (usually the direction of motion) is fed back into the randomised forest,

where it has a negative effect on the estimations for other people on subsequent

iterations. This issue could be resolved either by using training data from a wider

variety of scenes to learn the model parameters, or by modifying the tracker to

detect abnormal walking patterns so that they can be omitted.

Graphs of the MAAE and expected log likelihood after each of the first ten itera-

tions are shown in figure 6.11 for the two datasets. Although the likelihood increases

with each iteration, in both cases the MAAE for the full model remains relatively

unchanged after the second iteration and reaches a minimum after approximately

five iterations before increasing again slightly. This suggests that there might be

inaccuracies in the model causing a disparity between the actual accuracy and the

accuracy estimated by the likelihood function.
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Figure 6.11: Graphs showing how the expected log likelihood (top) and the MAAE
(bottom) change with each iteration. The MAAE plots compare the accuracy of
the full CRF model and the forest of randomised trees in isolation with the walking
direction baseline.
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Figure 6.12: Graphs showing how the MAAE changes with the number of direction
classes used (left) and the fraction of training data that was used (right).
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Further experiments were used to test the effect of some of the parameters used

for the optimisation. Figure 6.12 shows the results from experiments where the

number of classes and the fraction of data used were each varied. The performance

improved when the number of classes was increased up to 32, but the following

test with 40 classes resulted in slightly lower performance. Experiments with more

classes were not possible due to system memory limitations. It is possible that the

reduction in performance was due to the data in the leaves being too sparse, so

allowing leaves to hold more data before they are split might allow more classes to

be used.

In the experiments where a subset of the training data was used, complete se-

quences for a subset of the people in the dataset were processed. The results show

that the performance increases with the quantity of data which suggests that the

method would benefit from larger datasets.

Some sample image sequences for individual people with the randomised forest

estimations and expected state probability distributions are shown in figure 6.13.

Figure 6.14 shows the automatically estimated gaze directions drawn onto the video

sequences that they originate from.

6.5 Conclusion

We have developed a system which is capable of learning to estimate gaze directions

in surveillance video without any human intervention. Our evaluation has shown

that the performance of the scene-specific classifiers exceeds that of a convention-

ally trained classifier on the scene where they were learned. The following specific

contributions have been made in this chapter:

• A CRF model was developed to accurately represent the interactions between

gaze directions and walking directions.

• A complete system for inferring gaze directions and training a forest of ran-
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Figure 6.13: Four example sequences showing how head movements are correctly
identified. The horizontal axis corresponds to the 360◦ range of gaze directions,
with the centre representing 0 (looking at the camera). The vertical axis represents
time, with the first frame in the sequence at the top and the last frame at the
bottom. The red backgrounds show the observation probability (red is high) and
yellow backgrounds show smoothed probabilities from the latent variables (yellow is
high). The green lines are the direction in which the person is walking, blue is the
maximum of the marginal distribution and circles represent ground truth labels. The
left sequence shows a pedestrian who is moving, so the walking direction provides
a strong prior for the gaze direction. The right sequence shows a pedestrian who is
standing still, so the direction of motion is not helpful, but the learned randomised
forest ensures that the gaze direction estimates are still reasonably accurate.
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Figure 6.14: Frames from the two video datasets showing the estimated gaze direc-
tions drawn onto the people from which the automatic tracking extracted the head
image sequences.
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domised trees was demonstrated.

• A hybrid decision tree was proposed to allow efficient inference, with the po-

tential for additional benefits in a distributed system.

Our implementation is able to learn classifiers from batches of data in approx-

imately double the amount of time that is required to generate it, so a real-time

online implementation is feasible. An online implementation would allow a poten-

tially unlimited amount of training data to be used by accumulating the estimations

in the randomised trees continuously over an unlimited period of time, which the

experiments with different quantities of training data indicate would probably result

in improved performance.

There is also potential for improving the performance by combining the result of

the learning across a number of different installations. This would only require com-

bining the histograms from the randomised trees, and would allow hundreds or thou-

sands of times more data to be incorporated. Our hybrid randomised trees would

be of particular value in this case, because multiple forests of decision trees could be

easily combined if the same set of random branch tests were chosen across all instal-

lations. The only difference between the trees would be the points at which branches

were expanded, so by allowing additional histograms at non-terminal branches any

number of trees could be combined with a minimal increase in evaluation cost.

Although the randomised trees were used as a component in the CRF model,

they are also of value in isolation. The accuracy is lower in this case, but there is

no need for object velocities and the evaluation time is considerably lower.
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CHAPTER7

Conclusion

7.1 Thesis Summary

The objective of the research described in this thesis has been to automatically

estimate the gaze directions for pedestrians in surveillance video. Although the

primary objective has been to minimise the error in the gaze direction estimates,

the requirements for a gaze estimation system to be of practical value have also

been taken into consideration. All of the algorithms that have been developed

process video either in real-time or close to real-time and considerable effort has

been directed at the specific problem of ensuring that the methods generalise to

unknown scenes and people.

Chapter 3 described the development of predicate ferns for classifying gaze di-

rections using low resolution head images. The predicate ferns allowed images to be

classified without the prior assumptions about the skin and hair colour distributions
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that other similar approaches have made in the past. The classifiers are optimised

for very low resolution images, and are able to infer the person-specific skin and hair

colour histograms to improve the estimations in subsequent video frames.

The next, chapter 4, covered the development of a stable tracking system which

allowed the predicate ferns and other gaze direction classifiers to be compared with

realistic data. The tracking algorithm was able to track small groups of people in

PAL resolution video in real-time, or approximately twenty people in 1920x1080

resolution video at 5 FPS. The newly proposed HOG/CTC ferns were shown to

outperform similar classifiers on a variety of video datasets. Both the tracking and

gaze direction estimation components were combined, with the complete system

used to build attention maps representing the amount of interest received by different

areas of a scene. These attention maps were used to identify both static and transient

regions where the pedestrians frequently looked. The results from the experiments

motivated the approaches of the following two chapters.

An improved tracking algorithm based on MCMCDA within a sliding window

was developed in chapter 5 to both improve the stability of the head regions and to

provide guaranteed real-time performance. When evaluated in the context of general

pedestrian tracking the system was able to reach accuracy levels comparable with

state of the art pedestrian tracking systems, but unlike the others was able to process

video in real-time. An unexpected consequence of accurately modelling the failure

properties of the observations was the ability to track through total occlusions for

short periods of time.

Chapter 6, the last technical chapter, described a method for estimating gaze di-

rections without any hand labelled training data. The dynamics of head movements

relative to the walking direction and the corresponding effect on the appearance

of the head were modelled using a CRF. The learning algorithm was able to use

vast quantities of automatically acquired data to learn appearance models that were

customised for specific scenes. The resulting algorithm provided considerably more
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accurate gaze direction estimations than conventional approaches.

7.2 Contributions

The specific contributions of the four technical chapters are summarised below.

Chapter 3:

• A randomised fern based image classifier with predicate based branches was

proposed along with a corresponding algorithm for inference.

• A method for learning colour distributions corresponding to the abstract labels

to improve estimation accuracy was developed.

• Modifications were proposed to the standard methods for combining decision

tree estimates to make best use of the predicate ferns.

Chapter 4:

• A multi-target tracking system was developed for the specific purpose of ob-

taining stable image sequences

• Robust randomised fern based gaze classifiers were developed, which included

the new CTC image measurement to provide invariance to lighting effects.

• A complete system for measuring attention in large scale scenes was demon-

strated. This is believed to be the first system to measure attention in general

scenarios where pedestrians are able to move freely.

Chapter 5:

• A principled objective function was developed, allowing accurate location esti-

mates and robust data associations to be made, including the ability to track

through total occlusions.
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• A new move type for MCMCDA was introduced to allow the removal of false

positives, which could be also extended to identify different object types.

• An efficient and scalable multi-threaded architecture was proposed to allow

large crowds of pedestrians to be tracked in real-time.

Chapter 6:

• A CRF model was developed to accurately represent the interactions between

gaze directions and walking directions.

• A complete system for inferring gaze directions and training a forest of ran-

domised trees was demonstrated.

• A hybrid decision tree was proposed to allow efficient inference, with the po-

tential for additional benefits in a distributed system.

7.3 Future Work

A variety of approaches have been developed to cope with the specific problem of

coarse gaze estimation and there are many different directions in which the research

could be continued. The following suggestions are categorised by application area.

7.3.1 Gaze Direction Estimation

Online Gaze Learning The system for estimating gaze directions without hand

labelled image data in chapter 6 processed images in batches that were accumulated

over a short period of approximately twenty minutes. One limitation of this approach

is that the amount of data that can be processed is limited by the amount of memory

in the computer. The system would benefit from being adapted to operate using

an online data source so that potentially unlimited amounts of data could be used.

This could be achieved by including both fixed and variable histograms in the leaves
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of the randomised trees. The data corresponding to recently observed people would

be variable until the optimisation of their CRF had converged, at which point their

contributions to the leaf histograms would become fixed. During the maximisation

step of the optimisations, only the variable histograms would be adjusted.

7.3.2 Surveillance Tracking

Tracking Multiple Object Types The tracking model from chapter 5, distin-

guished genuine people from false positives occurring in the background by learning

different models of how the objects move. The same approach could be used to

distinguish between different types of pedestrian behaviour such as running, jogging

and cycling by including separate models for each. A model which assumes gradual

acceleration and accurate predictions from a constant velocity model would allow

the movement of a cyclist to be encoded more efficiently than that of a pedestrian.

If the HOG detector was replaced with a more general detection method such as

background subtraction it would also be possible to distinguish vehicles from people

using a similar approach.

Tracking Feedback The MCMCDA tracking system described in chapter 5 sam-

ples from the data association hypotheses to locate the mode before applying a

simple hill-climbing algorithm to find the single most likely hypothesis. Although

the aim is to find the most likely hypothesis, some situations are ambiguous and

have a small set of hypotheses that are almost equally likely, so there is a reasonable

chance that the wrong one will be chosen.

The asynchronous architecture that was proposed would allow this problem to

be solved by using feedback from the data association to the HOG detection mod-

ule. The MCMCDA component of the system could identify ambiguous associations

between detections by measuring the frequency with which the associations change

when the hypotheses are sampled. The result would be used to instruct the HOG de-
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Figure 7.1: An example of how MCMCDA feedback could be used to resolve am-
biguous data associations. Rectangles represent head detections, solid lines represent
data associations, and dotted lines show the time at which the HOG detector was
applied to the image. Two potential hypotheses with a similar likelihood are shown
in (a). The extra detections resulting from performing an additional search over an
intermediate frame as shown in (b) allows the ambiguity to be resolved.

tection module to perform additional searches, enabling the ambiguity to be resolved

(see figure 7.1). The additional searches would only cover a small image region and

scale range, so the extra time required would be insignificant when compared to the

cost of searching over the entire image.

7.3.3 General Image Classification

Trees and Ferns with Latent Variables The performance of the predicate-

based tree classifiers of chapter 3 is believed to have been limited by the use of

segmented images as input. An obvious solution to this problem would be to replace

the hard grouping of pixels into clusters and instead consider the likelihood of pixels

belonging to the same logical label. To cope with this, the inference algorithm could

be replaced by a branch-and-bound search where the bound would be based on the

joint probability of both the labelling hypothesis and the likelihood of the pixel

colours belonging to their assigned label histogram. This would also remove the

limit on the number of labels that could be used, since there would be no need to

search over all possible combinations, which would allow the method to be applied

to a wider variety of classification problems.
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The general principle of having branches in decision trees depending on latent

variables could be extended to allow branch tests to be arbitrary functions of the

observed data and the latent variables. The advantage of including latent variables

is to allow some of the natural variation in appearance to be removed from the clas-

sification process. Although the colour of an object is a variable to which invariance

is frequently required, other parameters such as the lighting direction could also be

included as latent variables. This would allow randomised trees to be constructed

with branches testing for properties such as the skin surface orientation, with the

likelihood of the branch being determined by the probability of the observed colour

being produced given the latent variables and the surface orientation required by

the branch outcome. The application domain of such a system would not be limited

to just image classification; it would be feasible to train a set of randomised trees to

estimate the orientation of an arbitrary 3D object to allow tracking in images that

are too small for geometric tracking methods to be applied.
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CHAPTER8

Appendices

8.1 List of Publications

The work described in this thesis contributed to the following publications:

Unsupervised Learning of a Scene-Specific Coarse Gaze Estimator
B. Benfold and I. D. Reid
Proceedings of the 13th International Conference on Computer Vision (ICCV),
Barcelona, November 2011

Stable Multi-Target Tracking in Real-Time Surveillance Video
B. Benfold and I. D. Reid
Proceedings of the 24th International Conference on Computer Vision and Pattern
Recognition (CVPR), Colorado Springs, June 2011

Gaze Directed Camera Control for Face Image Acquisition
E. Sommerlade and B. Benfold and I. D. Reid
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, May 2011
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Guiding Visual Surveillance by Tracking Human Attention
B. Benfold and I. D. Reid
Proceedings of the 20th British Machine Vision Conference (BMVC), London, Septem-
ber 2009
Best Student Poster Award

A Distributed Camera System for Multi-Resolution Surveillance
N. Bellotto, E. Sommerlade, B. Benfold, C. Bibby, I. Reid, D. Roth, C. Fernandez,
L. Van Gool and J. Gonzalez
Proceedings of the 3rd ACM/IEEE International Conference on Distributed Smart
Cameras (ICDSC) 2009

Colour Invariant Head Pose Classification in Low Resolution Video
B. Benfold and I. D. Reid
Proceedings of the 19th British Machine Vision Conference (BMVC), Leeds, Septem-
ber 2008

8.2 Complete Experimental Results

The result of training and testing each of the gaze classification algorithms described

in table 8.1 on every combination of head image datasets (see section 2.6.2) can be

found in tables 8.2 and 8.3. In cases where training and testing datasets are the

same, 80% of the data was used for training and the remaining 20% was used for

testing, with the exception of algorithm e which did require any training data. In

some cases the combination of testing and training dataset produces results that

are not representative of what could be achieved in a genuine deployed system.

Unrealistic experiments are shown with a grey background.
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8.3 Assumed Background Knowledge

A description of the Linear Kalman Filter is provided for reference.

8.3.1 Linear Kalman Filter

The linear Kalman filter is a well established method for updating state estimates

using new observations with Gaussian error. The brief explanation in this appendix

is adapted from [130]; a more detailed explanation can be found in Kalman’s paper

[55].

The state and covariance of the state at time step i using the information up to

and including that at time step j are represented by xi|j and Pi|j respectively. At

each time step, the matrix Fk provides a prediction of the state given the previous

one using the system evolution model. The matrix Bk−1 maps the effect of a known

control vector uk−1 into the state space and the error of the control input and

prediction is Qk−1. The predicted state and covariance are:

xk|k−1 = Fkxk−1|k−1 +Bk−1uk−1 (8.1)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk−1 (8.2)

The predictions are then updated using the observations that are made at time k.

The vector zk represents the location of the observation, Rk represents the covariance

of the observation, and Hk is a matrix to map from the state space to the observation

space. The following five calculations are made to update the state estimate for each

observation. First the innovation yk, which measures how much the observation

differs from the predicted value, is calculated along with its covariance Sk:

yk = zk −Hkxk|k−1 (8.3)

Sk = HkPk|k−1H
T
k +Rk (8.4)
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Next the optimal Kalman gain is calculated:

Kk = Pk|k−1H
T
k S
−1
k (8.5)

The Kalman gain specifies the fraction of the observation that should be used to

update the state:

Xk|k = xk|k−1 +Kkyk (8.6)

Pk|k = (I −KkHk)Pk|k−1 (8.7)

If there are no observations then multiple predictions can be made without any state

updates.
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