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Abstract

The majority of existing pedestrian trackers concentrate
on maintaining the identities of targets, however systems for
remote biometric analysis or activity recognition in surveil-
lance video often require stable bounding-boxes around
pedestrians rather than approximate locations. We present
a multi-target tracking system that is designed specifically
for the provision of stable and accurate head location es-
timates. By performing data association over a sliding
window of frames, we are able to correct many data as-
sociation errors and fill in gaps where observations are
missed. The approach is multi-threaded and combines asyn-
chronous HOG detections with simultaneous KLT tracking
and Markov-Chain Monte-Carlo Data Association (MCM-
CDA) to provide guaranteed real-time tracking in high defi-
nition video. Where previous approaches have used ad-hoc
models for data association, we use a more principled ap-
proach based on MDL which accurately models the affinity
between observations. We demonstrate by qualitative and
quantitative evaluation that the system is capable of pro-
viding precise location estimates for large crowds of pedes-
trians in real-time. To facilitate future performance com-
parisons, we will make a new dataset with hand annotated
ground truth head locations publicly available.

1. Introduction
(Preprint)1 The performance of pedestrian tracking sys-

tems has steadily increased to the point where attempts are
being made to track dense crowds of highly occluded pedes-
trians. The availability of high resolution surveillance video
has opened up new opportunities for exploiting the output
of such trackers by using them to produce streams of high
resolution pedestrian images. These images can be further
analysed to estimate body pose, recognise actions or for
passive face recognition.

In this paper we describe a system which is optimised for
the provision of accurate pedestrian head locations that are
suitable further processing. Our goal is to achieve robust-

1This is a draft version and contains some minor errors. The full version
is copyright and will be available from the IEEE following the CVPR 2011
conference.

Figure 1. An example of a frame in which we would like to track
(top) and sample output from our system (bottom left). The im-
ages in the bottom right show the result of a naive approach which
applies a fixed offset to a pedestrian detection to estimate the head
location, the result of which is badly centred and drifts around as
the pedestrian walks.

ness and high levels of accuracy whilst maintaining real-
time (25 fps) performance when tracking multiple pedestri-
ans in high definition surveillance video. Since humans are
non-rigid we use the head location as our point of reference
because heads are rarely obscured from overhead surveil-
lance cameras and are generally not obscured by clothing.
The advantages of tracking heads directly are illustrated in
figure 1.

Most recent work on multiple target tracking has focused
on appearance based methods, which can be divided into
two groups. The first group covers feed-forward systems
which use only current and past observations to estimate
the current state [7, 1, 2]. The second group covers data
association based methods which also use future informa-
tion to estimate the current state, allowing ambiguities to
be more easily resolved at the cost of increased latency
[12, 10, 11, 3, 19].
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The tracking algorithm described in the paper is based
around MCMCDA, of which the first instances were de-
veloped for tracking a single [4] or fixed number [16] of
targets. Oh et al. [15] developed the approach for general
multi-target tracking problems to associate sequences of ab-
solute observations into an unknown number of tracks.

Later work developed MCMCDA tracking systems
specifically for visual tracking by associating object de-
tections resulting from background subtraction [21] and a
boosted Haar classifier cascade [13]. The most recent work
[9, 18] further specialises the approach for visual tracking
by using not only object detections but also motion estima-
tions or tracklets by applying a standard tracking algorithm
for a short period of time after each detection. Our method
also uses a combination of detections and motion estimates
and bears closest resemblance to the work of Ge and Collins
[9], however we make a number of improvements.

The first contribution described in the work is the devel-
opment of a tracking model which accurately represents the
error characteristics of the detections and tracklets, allow-
ing the frame-to-frame motion to be estimated with pixel-
level accuracy. The resulting location estimates are accurate
enough for the generation of stabilised sequences of pedes-
trian images.

The next contribution involves the treatment of false-
positive detections. Previous approaches have assumed that
false positives occur as individual uncorrelated detections,
however in practice appearance-based detectors often gen-
erate repeated false-positive detections in similar locations.
We remedy this problem using ideas recently applied to
SLAM [6] by creating a separate model for false-positives
and combine the identification of false positives with the
data association.

The final contribution is a comprehensive evaluation of
the tracker on multiple datasets using the standard CLEAR
MOT [5] evaluation criteria. Additional experiments assess
the performance of the system under various constraints that
might affect deployment in different application domains.

Achieving real-time performance remains beyond the
reach of most existing tracking-by-detection systems. We
note that the detection stage, especially in high definition
video, is a bottleneck and most algorithms (notably the suc-
cessful and popular HOG) cannot run at full framerate even
when using GPU acceleration. In addressing this issue we
adopt a multi-threaded approach, in which one thread pro-
duces asynchronous detections, while another performs lo-
cal feature based tracking (KLT), a third performs data as-
sociation and a fourth generates and optimises the output.
A key feature of our work is the use of MCMC data asso-
ciation within a temporal sliding window. The advantage
of this approach is that at any instant in time the system
can report its current best estimate of all target trajectories,
but these may change either with more video evidence, or

with further iterations. In particular this gives the system
the ability to cope with full occlusions for short periods of
time.

2. Sliding Window Tracking
2.1. Observations

To make the tracking algorithm robust to false detec-
tions, the data association and location estimates are per-
formed by considering all of the data within a sliding win-
dow representing the most recent six seconds of video that
has been received. We obtain object detections using Dalal
and Triggs’ Histograms of Oriented Gradients (HOG) [8]
based detection algorithm for which we trained a detector
using head images rather than full body images. Using
a GPU implementation [17] of the HOG detector, detec-
tions are received at intervals from approximately 200 mil-
liseconds for PAL resolution video to 1200 milliseconds for
1080p video.

Since detections are received infrequently, motion es-
timates are necessary to ensure that data associations can
be made correctly. We make motion estimates by follow-
ing corner features with pyramidal Kanade-Lucas-Tomasi
(KLT) tracking [14, 20]. To provide robustness against KLT
tracking failure, up to four corner features are tracked both
forwards and backwards in time from detections for up to s
seconds, so between any sequential pair of detections there
will be relative location estimates in both directions. In
practice we use a value of four seconds for s, which gives
good performance without introducing too much latency.
KLT tracking was chosen because it is more precise than
alternatives such as mean-shift and because tracking mul-
tiple corner features provides redundancy against tracking
failures. These motion estimations also allow the accurate
estimate of head locations between detections.

2.2. Data Association

The purpose of the data association stage is to select a
hypothesis Hi which divides the set of detections D into
disjoint subsets T1, T2 . . . TJ where each subset Tj contains
all of the detections corresponding to a single person (see
figure 2. Since not every detection that occurs is a true pos-
itive, for each Tj we also attempt to infer the type cj of
the corresponding track. We use cj = cped to represent the
property of Tj being a genuine pedestrian track or cj = cfp

if we believe Tj is a track of false positives, which will be
abbreviated to just cped and cfp. For more general situa-
tions, this variable could be extended to represent a number
of different moving object types such as cars, bicycles and
trees, each of which would have an individual motion model
to facilitate classification.

Exhaustively evaluating the space of hypotheses is too
slow even for small sets of detections, so we use MCMC



Figure 2. (Requires Colour) Views showing all of the head de-
tections (small rectangles) and the corresponding KLT motion es-
timates (thin lines) within the sliding window. The colours rep-
resent the tracks to which the observations have been assigned.
The top image shows the observations projected onto the current
frame, the middle plot shows the data association hypothesis that
has been made and the bottom image shows the result without data
association

sampling to efficiently explore the space of data associa-
tions by generating a sequence H0,H1,H2, . . . of sampled
hypotheses. These sampled hypotheses will be distributed
according to their relative probabilities which are defined
by our likelihood function. The random nature of MCMC
helps to prevent the search from becoming stuck in local
maxima of the likelihood function.

2.2.1 Likelihood Function

Our likelihood function p(Hi) is proportional to the prob-
ability of Hi representing the correct data associations and
track types. In previous approaches, the likelihood function
has been estimated as a product of a number of terms based
on specific properties such as the length of tracks, veloc-
ity coherence, spatial overlap and the number of detections
considered to be false alarms. We take an approach based
on the principles of MDL by attempting to find the hypothe-
sis which allow the most compact representation of the ob-
served detections. The code length L required to encode
both the data D and our hypothesis H to a given accuracy
is dependent on a corresponding likelihood function:

L(D|H) + L(H) = −log(p(D|Hi)p(Hi)) (1)

Although finding the hypothesis which minimises the de-
scription length is equivalent to maximising the joint likeli-
hood of the data and the hypothesis, the principles of MDL
guide the choice of likelihood function to one which allows
observed variables to be encoded efficiently.

First we consider the encoding of the hypothesis Hi,
which requires each detection d to be assigned to a track and
each track to be given a type label. The track membership
is most efficiently encoded when the prior over track mem-
bership has a distribution equal to that of the track lengths,
resulting in the following prior for Hi:

p(Hi) = J !
∏

Tj∈Hi

(
|Tj |
|D|

)|Tj |

p(cj) (2)

where p(cj) is a prior over the different track types and
the notation |D| is used to denote the cardinality of the set
D. The factor of J ! arises because the ordering of the sub-
sets is not important, so the first detection in any track may
be encoded with any of up to J identifiers which have not
already been used.

Detections genuinely from the same track are expected to
be highly correlated so can be efficiently encoded in terms
of one another once divided into tracks. The improvement
in encoding efficiency will almost always save more infor-
mation than is required to store the hypothesis. Next we
break down the likelihood function into components repre-
senting each track. Let dj

n be the nth detection in a track
Tj , where the index n indicates only the order within the
track

p(D|Hi) =
∏

Tj∈Hi

p(dj
1|cj)

∏
dj

n∈Tj\dj
1

p(dj
n|d

j
n−1, cj)


(3)



For each detection, we would like to encode the scale of
the detection sn, the location xn within the frame, and an
approximation to the KLT motion mn. To ensure equiva-
lent behaviour over different scales, the location accuracy
is measured relative to the size of the object, so the units
of xn are multiples of sn rather than pixels. Ideally we
would consider the coding of the KLT motion estimates too,
but due to the quantity of data this would have a negative
impact on performance. Since the magnitude of the KLT
motion is important for distinguishing between true posi-
tive and false positive detections, we instead approximate
the motion by building a histogram mn from the magnitude
of every frame-to-frame motion estimate originating from
detection n. The likelihood functions for individual detec-
tions are then be broken down into components representing
these observed properties:

p(dj
1|cj) = p(s1)p(x1)p(m1|cj) (4)

p(dj
n|d

j
n−1, cj) = p(sn|sn−1)p(xn|xn−1, cj)p(mn|cj)

(5)

Variables upon which the probabilities are conditional
have been omitted where independence is assumed.

Detection Scales The scale of the first detection in each
track cannot be encoded in terms of any preceding detec-
tion, so a global prior log-normal distribution with mean µp

and variance σ2
p is assumed:

ln sn ∼ N(µp, σ
2
p) (6)

The scales for the following detections in the track can
then be encoded more efficiently in terms of the previous
scale:

ln
sn

sn−1
|cped ∼ N(0, δtσ

2
sp) (7)

ln
sn

sn−1
|cfp ∼ N(0, δtσ

2
sf ) (8)

where δt is the time difference between the frames in
which the detections were made.

Image Location A similar approach is used when con-
sidering the optimal method for encoding the image loca-
tion. It is assumed that the locations of both pedestrians and
false-positives are uniformly distributed around the image,
so the probability density of xn depends on the image area
a relative to the object size in pixels:

p(xn) =
a

s2
k

(9)

For subsequent detections, the locations can be better ex-
plained in terms of the preceding detections, however the
way in which we do this depends on the track type cj . For

genuine pedestrians, we first make a prediction based on a
constant velocity model:

xp = xn−1 + δtvp (10)
Σp = δtΣv (11)

the velocity estimate vp comes from the result of the KLT
tracking in the frames immediately before and after the de-
tection, by which point it is unlikely to have failed. The er-
ror in the velocity due to unknown accelerations is modelled
by the parameter Σv . Whilst the constant velocity model is
an improvement on the uniform prior, the error Σp is still
large partly due to the cyclic gait motion and also because
detections are infrequent and humans often change direction
when in crowds. The full KLT motion estimates generally
provide much more accurate predictions, so for each KLT
motion estimate y we calculate a posterior distribution over
locations using a calculation equivalent to the update step
of a Kalman filter:

xy = xn−1 + Σp(Σp + δtΣklt)−1(xn−1 + y − xp) (12)

Σy = (I − Σp(Σp + δtΣklt)−1)Σp (13)

The parameter Σklt represents the rate at which KLT fea-
ture tracking accumulates random error and δt is the time
difference between detections dn and dn−1. The possibility
that a tracked KLT feature fails completely is modelled us-
ing the parameter α, where (1 − α)δt is the probability of
failure after tracking for δt seconds. The detection location
is then encoded using a mixture of the prior and posterior
distributions:

xn|xn−1,y, cped ∼ αδt
1
|y|

∑
y∈y

N(xy,Σy + 2Σd)

+ (1− αδt)N(xp,Σp + 2Σd) (14)

In the event that y is empty, α is set to 0 and the first term
is omitted. The additional uncertainty of 2Σd is included
to model the error in the two detection locations. Tracks
consisting of repeated false-positives are usually caused by
static objects in the background so are assumed to be sta-
tionary:

xn|xn−1,y, cfp ∼ N(xn−1, 2Σd) (15)

Motion Magnitude The last observation considered is
the motion magnitude histogram. This is included only to
help distinguish between false positives which are expected
to have no movement and true positives which are expected
to move at least a small amount, so the histogram has just
four bins with boundaries representing movement of 1
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and 1
2 pixels per frame. The histograms are expected to

conform to one of two multinomial distributions depending
on the type of track:

mn|cped ∼ Mult(mped) (16)
mn|cfp ∼ Mult(mfp) (17)

Throughout this section the probability of each detection
being in a track has been calculated by considering only
the immediately preceding and immediately following de-
tections. This first-order approximation was made to en-
sure that the MCMC data association can be performed effi-
ciently, with each proposal requiring only a minimal calcu-
lation. The optimisation of the joint probabilities is deferred
to section 2.3.

2.2.2 Sampling

There are three types of move which can be made during the
sampling process, the first two moves effect the state of the
data association and the third has the potential to change the
type of a track. The first type of move involves randomly
selecting one detection and one track, and proposing that
the chosen detection be moved to the chosen track, as illus-
trated in figure 3. In the event that the track already contains
a detection from the same frame, both are swapped in the
proposal. In the second type of move we choose two tracks
and a random time within the sliding window and propose
that all of the detections occurring after the time in both of
the tracks are swapped with those in the other.

To calculate the likelihood p(H∗) of the first proposal re-
quires at most four evaluations of equation 5 and the second
requires no more than two. The third move type, in which a
change of track type is proposed, requires the probability of
every detection in a single randomly chosen track to be re-
evaluated. Fortunately this third move type depends on just
one track so does not need to be attempted as frequently.

The Metropolis-Hastings acceptance function defines the
likelihood with which the proposal should be accepted:

p(Hi+1 ⇐ H∗) = min
(

p(H∗)q(Hi|H∗)
p(Hi)q(H∗|Hi)

, 1
)

(18)

In most cases the proposal density q will be the same for
both the forward and the reverse move, however there are
some cases where is is not. Random tracks for proposals
are drawn from the set of existing tracks plus one additional
empty track. This empty track allows a new track to be
created, and similarly either of the two moves could leave
one of the tracks empty in which case it is destroyed. Since
only one empty track is retained, the creation or destruction
of a track effects the probability of the move being made.

Move 1: Swap Move 2: Switch

Figure 3. Examples of the first two types of move used for MCM-
CDA. Only the probabilities for pairwise associations with dotted
lines need to be recalculated when each move is proposed.

Although Metropolis-Hastings is good at overcoming lo-
cal maxima of the likelihood function, we prefer stable out-
put rather than samples. To obtain stable output we keep
track of the most likely hypothesis since observations were
last received and output the local maximum, which is found
by only accepting proposals that are more likely than the
current hypothesis for a short period of time.

2.2.3 Parameter Estimation

Some of the model parameters such as the detector covari-
ance are likely to depend on characteristics of the particular
video sequence such as the level of image noise and blur.
In our system these are learned automatically using an ap-
proach based on that of Ge and Collins [9] by interleav-
ing the MCMCDA sampling with additional Metropolis-
Hastings updates of the parameters. Provided the parame-
ters are initialised to values allowing some tracks to be cor-
rectly associated, both the parameter samples and the data
association converge to a good maximum of the likelihood
function. Parameter updates take considerably longer than
data association updates because the log-likelihood must be
recalculated for all of the data. In a live system the param-
eters can be learned online over an hour or two. However,
since most datasets are too short for this, we slow down the
video used for training so that there is enough time to learn
the parameters.

2.3. Output Generation

The final stage is to generate estimates for the object lo-
cation in each frame. First we estimate the true image loca-
tions x̂n for all of the detections in each track.

p(T̂j) =
∏

1<n≤N

p(x̂n|x̂n−1,y, cped)p(x̂n|xn) (19)

x̂n|xn ∼ N(xn,Σd) (20)



The term p(x̂n|x̂n−1,y, cped) is equivalent to equation
14 but without the 2Σd terms. Since multiple KLT estimates
result in multimodal probability distributions, we again op-
timise using Metropolis-Hastings sampling.

Since detection do not occur in every frame, the location
estimates for the other frames are made by interpolating
between detections. Interpolations are made by averaging
each of the relevant KLT motion estimates weighted by the
corresponding contribution to the mixture in equation 14.

3. Evaluation
The purpose of our system is to provide stable head lo-

cation estimates in surveillance video, however there are
no standard datasets for evaluating this so we use our own
video dataset of a busy town centre street. The video is high
definition (1920x1080/25fps) and has ground truth consist-
ing of 71500 hand labelled head locations, with an average
of sixteen people visible at any time. Both the ground truth
for this sequence and our tracking output will be made pub-
licly available to encourage future comparisons.

Four metrics are used to evaluate the tracking perfor-
mance. The Multiple Object Tracking Precision (MOTP)
measures the precision with which objects are located us-
ing the intersection of the estimated region with the ground
truth region. Multiple Object Tracking Accuracy (MOTA)
is a combined measure which takes into account false pos-
itives, false negatives and identity switches (see [5] for de-
tails). The detection detection precision and recall are also
included to enable comparisons with other work. Since
head regions are considerably smaller than full body boxes,
any error in the location estimates has a much more signif-
icant impact on the performance measures than for the full
body regions. For this reason the two should not be directly
compared, however to allow some comparison to be made
with full-body trackers, we also calculate the performance
measures using full-body regions that are estimates from the
head locations using the camera calibration parameters and
a known ground plane. All experiments were performed
on a desktop computer with 2.4GHz quad-core CPU with
GPU accelerated HOG detections and in real-time unless
otherwise stated.

The results for the town centre video are shown in ta-
ble 1. Since there are no similar head tracking results to
compare with, baseline results from raw HOG head and
full body detections are included for comparison. We also
examine the effects of adjusting the latency between when
frames are received and when output is generated for them
(figure 4) because this is relevant for many practical applica-
tions. Some insight into the cause of most tracking failures
can also be gained from figure 5, which shows how track-
ing at lower speeds affects the performance. The result is
that although more frequent detections increase the recall,
the precision drops because there are more false positives.
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Figure 4. Reducing the latency introduced between frames arriv-
ing and their output being generated causes the recall to decrease.
Performance measure are for head regions.

0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Speed Relative to Real−Time

P
er

fo
rm

an
ce

 M
ea

su
re

 (
%

)

 

 

MOTP

MOTA

Precision

Recall

Figure 5. A graph showing the affect of slowing down the system
so that more time is available for processing the video. Perfor-
mance measures are for head regions.

These false positives are the result of incorrect head detec-
tions on other body parts such as shoulders or on bags and
often occur repeatedly in the same place as the pedestrian
moves.

Whilst the system we describe was intended for the pur-
pose of obtaining stable image streams, we also demon-
strate the general tracking performance by performing a
quantitative analysis on a standard test video from the i-
Lids AVSS 2007 dataset. The video is of a train station
platform, has a resolution of 720 x 576 pixels at 25 fps and
has 9718 labelled ground truth regions. The ground truth is
for whole pedestrians and we only track heads, so the full
body regions were estimated using an approximate camera
calibration with a ground plane assumption. Since the video
includes distant people that are too small for the head detec-
tor to detect, alternate detections were performed with the
standard full body HOG detector with a fixed offset to es-
timate the head location. A separate detection covariance
parameter was learned for full body detections. The results
are shown in table 2.



Head Regions Body Regions
Method MOTP MOTA Prec Rec MOTP MOTA Prec Rec
Our tracking 50.8% 45.4% 73.8% 71.0% 80.3% 61.3% 82.0% 79.0%
HOG head detections 45.8% - 35.0% 52.7% 76.1% - 49.4% 74.5%
HOG body detections 44.3% - 44.7% 39.3% 72.7% - 82.4% 72.3%

Table 1. Tracking performance on the town centre sequence for our tracking system and baseline estimates using raw HOG head and full
body detections. Body regions from the HOG detector were converted to head regions using a fixed offset and head regions were converted
to body regions using the camera calibration. MOTA takes into account identity switches so cannot be calculated without data association.
The HOG detectors were applied to every video frame, which is approximately ten times too slow to run in real-time.

Method MOTP MOTA Prec Rec
Ours 73.6% 59.9% 80.3% 82.0%
Breitenstein et al. [7] 67.0% 78.1% - 83.6%
Stalder et al. [19] - - 89.4% 53.3%

Table 2. Tracking performance for full body regions on the i-Lids
AB Easy sequence using both the CLEAR metrics and standard
detection precision and recall.

In addition to these datasets, we also show qualitative
results on the PETS 2007 videos, for which we do not have
ground truth data, to demonstrate the ability of the system to
cope with dense crowds of people. Figure 6 shows sample
frames from all three sequences along with cropped head
regions to demonstrate the stability of the tracking.

4. Conclusions

We have described and demonstrated a scalable real-time
system for obtaining stable head images from pedestrians
high definition surveillance video. The use of MCMCDA
makes the system robust to occlusions and allows false pos-
itive detections in the background to be identified and re-
moved. The system has many potential applications in ac-
tivity recognition and remote biometric analysis or could
be used to provide close-up head images for a human ob-
server. The experiments performed show that our efficient
approach provides general tracking performance compara-
ble to that of similar systems, whilst being advantageous in
terms of speed and tracker stability.
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