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Abstract

We present a method to estimate the coarse gaze direc-
tions of people from surveillance data. Unlike previous
work we aim to do this without recourse to a large hand-
labelled corpus of training data. In contrast we propose
a method for learning a classifier without any hand la-
belled data using only the output from an automatic track-
ing system. A Conditional Random Field is used to model
the interactions between the head motion, walking direc-
tion, and appearance to recover the gaze directions and
simultaneously train randomised decision tree classifiers.
Experiments demonstrate performance exceeding that of
conventionally trained classifiers on two large surveillance
datasets.

1. Introduction
(Preprint)1 Our aim is to automatically identify the di-

rection in which people are facing as a coarse estimate of
their gaze direction. Doing so in unconstrained environ-
ments is particularly difficult because of the many variables
affecting the appearance of an individual. Facial structure,
hair style and colour, skin colour, blurry images, lighting
conditions and accessories such as hats and sunglasses con-
tribute to large variations in the appearance of different peo-
ple looking in the same direction compared with poten-
tially subtle differences between the appearance of the same
person looking in different directions. Recent approaches
to estimating gaze direction in surveillance scenarios have
treated this as a classification problem and quantised the
gaze direction into one of 8 classes, each one representing
45◦ of the full 360◦ range. These classifiers are learned
using a large corpus of hand-labelled training exemplars
[1, 2, 16, 17, 7, 13]. In this paper we examine the possi-
bility of learning to estimate gaze directions in an unsuper-

1This is a draft version and may contain some minor errors. The full
version is copyright and will be available from the IEEE following the
CVPR 2011 conference.

Figure 1. Randomly chosen sequences from the two video
datasets. The sequences demonstrate the problems of image blur,
tracking failures, incorrect detections and unusual appearances
caused by clothing such as hats.

vised manner using the output of an automatic head track-
ing system. By observing a scene for an extended period
we can have some confidence that the head tracker acquires
data representative of all the classes. Furthermore we also
note that people tend to look in their direction of motion.
The combination of these two factors yields the potential
to automatically acquire a very large set of weakly labelled
data without human intervention. Furthermore, such a train-
ing set has the potential to yield classifiers customised to
the specific conditions of particular installation, such as the
viewpoint, focus and lighting conditions which would be
difficult to train for explicitly. Nevertheless, automatic ac-
quisition of training data in this manner will inevitably yield
a high percentage of incorrect labels, not only because peo-
ple do not always look in their direction of travel, but also
because the images of the heads may not be well centred or
could represent false positives, as shown in figure 1.

We use a head tracking [3] system to acquire data con-
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sisting of image windows averaging 24 × 26 pixels in size
representing putative head regions. For each image the
tracker also provides an instantaneous ground plane veloc-
ity estimate for the corresponding pedestrian. In our two
exemplar scenarios used to evaluate the idea, we have ac-
quired datasets comprising 473412 images from 2258 peo-
ple for the first scenario and 639581 images from 3861 peo-
ple for the second.

The system is based around a Conditional Random Field
(CRF) which models different aspects of gaze behaviour,
such as the tendency for pedestrians to look in their direc-
tion of travel. When applied to a dataset, the CRF automat-
ically infers the gaze directions for the images and as a side
effect also trains a forest of randomised tree classifiers. The
randomised forest models the interaction between the head
images and the gaze direction variables within the CRF, but
once trained can also be used as a standalone gaze classifier
without the CRF.

The method for learning a classifier that we describe is
weakly supervised when considered in isolation, however
the weak supervision consists of the direction of motion
from an unsupervised tracking system. When considered
in combination with the tracking system, our approach is
fully unsupervised. In the context of learning, our system
has some similarities to that of Leistner et al [8], who used
multiple instance learning with randomised trees to classify
object images into categories.

Gaze estimation in visual surveillance is motivated by
applications requiring inference of interactions between
people [10] and frequently observed scene locations [9, 2].
Existing methods for coarse gaze estimation use manually
labelled data to train various types of classifier such as Sup-
port Vector Machines [13, 7], Decision Trees [2, 1, 16],
Neural Networks [17] and Nearest Neighbour classifiers
[11]. In the majority of these approaches [13, 16, 17, 7],
training images were obtained from the same scenes that
were used for testing, which is advantageous but unrealis-
tic unless methods are available for training without manual
intervention.

Our system relies heavily on an accurate model of human
gaze behaviour. A recent study of human gaze behaviour
provided a set of hand labelled ground-plane velocities and
gaze directions. We used this data, which we will refer to
as the model data, to infer some of the parameters for our
gaze behaviour model. These parameters are expected to
generalise to any video sequence so the same values were
used when testing on both datasets.

2. Model Formulation
The observations used as input to our system consist of

a set of image sequences I = {ix} where every image has
a corresponding movement direction and magnitude vt rep-
resenting the individual’s ground plane velocity. There are
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Figure 2. Distribution of gaze direction relative to walking direc-
tion over all people (top) and eight individual people (bottom).
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Figure 3. The distribution of head angular velocity relative to the
walking direction over all of the people in the model data.

three key properties of the tracked images that we harness
to infer the gaze directions. The first is that people tend
to look most frequently in their direction of travel, an intu-
ition which is confirmed by the model data shown in figure
2. The second property is that people usually move their
heads slowly, so we expect sequential gaze directions to be
reasonably similar. Again, this is confirmed by the plot of
angular velocities from the model data shown in figure 3.
Lastly, we expect the appearance of people to be more sim-
ilar when they are looking in the same direction compared
to when they are not.

The overall estimation is based around the optimisation
of a CRF, the structure of which is represented as a factor
graph in figure 4. Using the clique template representation
of Sutton and McCallum [18], we divide the factors ψc into
four sets C = {CT , CF , Cω, CI} depending on which ran-
dom variables they combine. The overall conditional prob-
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Figure 4. A factor graph showing how cliques and variables inter-
act in the CRF. The angle estimate at time t is represented by θtx,
the angular velocity between times t and t+1 is represented by
ωt, and the observed image information and walking velocity are
represented by it and vt respectively.
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Figure 5. The three components of the mixture model used to rep-
resent the angular velocity.

ability is represented as the product of the individual factor
functions:

p(θ,ω|i,v) = 1

Z(x)

∏
Cp∈C

∏
ψc∈Cp

ψc(ic,vc,θc,ωc) (1)

The function Z(x) represents a normalising constant which
is required to ensure that the distribution sums to one given
the observed image i and velocity v. The labels, which
consist of the estimated gaze directions θt and angular ve-
locities ωt, are both discretisied to allow efficient inference.
Gaze directions are represented as a distribution over 32
bins each representing an 11.25 degree range of angles.

The angular velocity ωt is represented as a vector of
three weights ωt = (ω+, ω0, ω−)T which correspond to
the probability of the angular velocity being represented by
each of three components, which are shown in figure 5. The
first component is a Gaussian to represent the peak in the
centre of the distribution corresponding to no head rotation.
The other two components are log-Gaussians to represent
rotations in the positive and negative directions. We deter-
mined the parameters for these three components from the

Figure 6. The two feature types that were used in the randomised
tree classifiers. The first feature type (left) is determined by com-
paring two bins from normalised HOG descriptors and the second
feature type (right) compares three different colour samples

model data using Expectation Maximisation.
The following sections will define how the four types

of factor function model the interactions between random
variables.

2.1. Angular Velocity Factors

We begin by defining the factor representing transitions
between angular velocities. The parameters consist of a sin-
gle matrix A representing the probability of transitioning
from one angular velocity state to another:

ψc(ω
t, ωt+1) ∝ P (ωt+1|ωt) (2)

∝ (ωt)TAωt+1 (3)

The angular acceleration matrix A was estimated from the
model data.

2.2. Image Classification Factors

The next factor is that which relates head images to di-
rections. Initially we do not have any information on the
mapping between images and gaze directions, however we
do know that similar images are more likely to represent the
same direction. This property is modelled using a forest of
randomised tree classifiers, with each leaf node containing
a histogram over the 32 direction bins, initially representing
a uniform distribution. The histograms are scene-specific
parameters that are inferred during the automatic learning
process.

Randomised trees were constructed with two types of de-
cisions and were trained by splitting branches until there
were fewer than one hundred examples in each leaf node.
The branch decisions were selected from the two types used
in our past work [2], which are illustrated in figure 6 and re-
capitulated briefly below. Since the true labels for images
were not known in advance, the decisions were selected at
random for each branch. We make all decisions at the same
depth equal, which gives our trees some of the performance
advantages of ferns [19, 14]. Since trees only expand leaves



containing data, we retain the advantages of trees in terms
of storage requirements, which allows training to a greater
depth than would be possible with ferns.

The first type of decision compares randomly chosen
bins from Histograms of Oriented Gradients (HOGs) with
spatial normalisation as used by Dalal and Triggs [4] for
their pedestrian detector. Descriptors consist of gradient
histograms constructed from images that have been divided
into a 4 × 4 grid of cells and normalised spatially across
2× 2 blocks of cells.

The second type of decision is the Colour Triplet Com-
parison (CTC) which samples colours from pixels at three
different locations in the head image and makes a binary
decision based on whether the first and second colours are
more similar than the second and third colours. Similarity
was measured as the sum of the differences in each of the
RGB components (i.e. the L1 Norm of the vector differ-
ence).

A forest of forty randomised trees was used to represent
the angle distributions, with the factor function averaging
over all of the outputs to obtain the required probability es-
timate:

ψc(θ
t, it) =

1

n

n∑
k=1

P (θt|Dk(it)) (4)

The notationDk(it) is used to represent the branch decision
outcomes from passing it down the kth tree in the forest,
from which the conditional probability is estimated using
the histogram at the corresponding leaf.

Randomised tree classifiers were chosen because they re-
quire very little time to retrain if the image data remains the
same and only the corresponding class distributions change.

2.3. Changing Image Factors

The next type of factor is intended to represent the corre-
lation between the gaze direction changing and the observed
image changing. The distance between two head images
d(it, it+1) is measured as the number of randomised trees
in which the two images reached different leaves, if δ rep-
resents the Kronecker delta function then this is defined as:

d(it, it+1) =

n∑
k=1

δ(Dk(it), Dk(it+1)) (5)

The vector φ of length n+1 represents the probability of the
head being stationary for each possible number of different
bins, resulting in the following factor definition:

ψc(ω
t, it, it+1) = P (ωt|it, it+1) (6)

∝ ω0φd(it,it+1) + (1− ω0)
1− φd(it,it+1)

2
(7)

The elements of φ are scene-specific parameters that are
learned automatically and ω0 is the element of ωt repre-
senting the probability of the ωt being represented by the
stationary component.

2.4. Head Motion Factors

Lastly we describe the factors CT which cover the tran-
sitions between pairs of gaze directions. The factor function
is defined in terms of a prior transition matrix T and a ma-
trix of angular velocity marginals M :

ψc(θ
t, θt+1, vt, vt+1, ωt) ∝ P (θt+1|θt, vt, vt+1, ωt) (8)

∝ (θ∗t)T(T ⊕M)θ∗t+1 (9)

The operator ⊕ is used here to denote the element-wise
product of two matrices and θ∗t represents the vector θt ro-
tated so that it is measured relative to vt. M is a cyclic
matrix where elements mij represent the probability of the
angular velocity required to transition from state i to state j
given the estimated angular velocity parameters ωt.

The matrix T represents our prior knowledge of how the
gaze direction should change between each pair of frames.
Many of the elements in T could be learned from the obser-
vations, however some of the elements represent transitions
that are expected to occur very infrequently, such as rapid
head movements or transitions between backward facing di-
rections. These elements would be impractical to estimate
empirically. To avoid estimating all 322 elements of T di-
rectly, the number of degrees of freedom in was reduced by
parameterising T , as described in section 2.4.1, before fit-
ting to the transitions in the model data using a constrained
optimisation.

In the event that either vt or vt+1 has a magnitude of
less than half the mean human walking speed (0.7ms−1 ),
the walking direction is considered to be unreliable and the
head motion factor is evaluated in the absolute frame of ref-
erence. This differs from equation 9 in that θt and θt+1

are used rather than the relative versions and a small mod-
ification is made to the steady state for T , which will be
described in the next section.

2.4.1 Transition Matrix Parameterisation

From any state, we represent the probability of travelling to
a destination state as a mixture z of the three components
illustrated in figure 5. It is these mixture coefficients on the
three components of the velocity distribution that constitute
the parameterisation.

When an individual is facing their direction of travel,
there is an equal probability that they will move their gaze
direction to the left or to the right, however if they are al-
ready looking sideways it is more likely that they will move
their gaze direction towards the direction of travel. This ob-
servation has been previously used to aid high resolution



head tracking [5]. We model this by allowing the weights
for the three components to vary depending on the current
angle of the head, so the parameterisation consists of three
vectors of n weights z+, z0 and z− corresponding to pos-
itive, stationary and negative rotation probabilities respec-
tively. Each of the three components were quantised to give
a probability distribution q over discrete states so the mem-
bers of T could be easily calculated efficiently:

tij = z+
i q

+
j−i (mod n) + z−i q

−
j−i (mod n) + z0

i q
0
j−i (mod n)

(10)
The values for the weights are optimised to ensure that

they represent a transition matrix that is consistent with
both the prior angular velocity mixture weights ωtpr and
some general properties of head motion, both of which were
learned from the hand labelled motion data. Specifically,
the following constraints must be met for a transition ma-
trix to be valid:

Total Weight To ensure that the probability mass repre-
sented by the velocity distribution sums to one, each set of
three component weights must total one:

CΣ
i (z) = z+

i + z0
i + z−i − 1 = 0 (11)

Positive Weights To prevent negative transition probabil-
ities, inequality constraints must be added to ensure that
each of the 3n component weights are not negative:

Cp
+

i (z) = max(−z+
i , 0) = 0 (12)

Cp
0

i (z) = max(−z0
i , 0) = 0 (13)

Cp
−

i (z) = max(−z−i , 0) = 0 (14)

Steady State The gaze directions of pedestrians are
highly correlated with their walking directions, since peo-
ple tend to look in their direction of travel and rarely look
behind themselves. The gaze distribution of an individual
observed for long enough should tend towards the distribu-
tion s shown in figure 2. We expect the transition matrix to
satisfy this condition if s is its steady state:

TTs = s (15)

To enforce the steady state distribution, constraints were in-
troduced with the following form:

CSi (z) =

∑
j tjisj

si
− 1 = 0 (16)

If an individual is not walking and the motion factor is eval-
uated in the absolute frame of reference, s is set to be uni-
form to reflect the lack of prior knowledge on potential gaze
directions.

Objective Function The requirements above constrain
2n degrees of freedom, however z has 3n variables. A con-
straint on the relative values of z0

i could be introduced to
provide an additional n− 1 constraints, but doing so would
make it often impossible to satisfy all of the constraints.
Instead, an objective function was used to regularise the so-
lution by imposing the preference of having the stationary
weights equal to the angular velocity mixture weight priors:

f(z) = −
∑
i

(z−i −ω
−
pr)

2+(z0
i−ω0

pr)
2+(z+

i −ω
+
pr)

2 (17)

2.4.2 Transition Matrix Optimisation

To find the optimal parameter values for the matrix T , the
constraints were combined with the objective function using
the quadratic penalty method [12]. Every constraint intro-
duces a penalty term which is zero when satisfied.

F (z;µ) = f(z)− 1

2µ

∑
i

(
CΣ
i (z)

2 + CSi (z)
2

+ Cp
+

i (z)2 + Cp
0

i (z)
2 + Cp

−

i (z)2
)

(18)

Although the constraints have the same quadratic form as
the objective function, the parameter µ is reduced during
the optimisation to make the penalty functions dominate
over the objective function to ensure that the constraints are
satisfied. The objective function has discontinuous second
derivatives resulting from the inequality constraints, so non-
linear conjugate gradients was used to perform the optimi-
sation instead of a Newton-based method.

3. Model Optimisation
Having described the structure of the individual factor

functions, we now consider the optimisation of θ and ω,
which we consider to be latent variables for the purpose
of learning the scene parameters. The learning uses the
Expectation Maximisation algorithm, which alternates be-
tween calculating an expectation over the latent variables
and maximising the parameters given the expectation.

Since our CRF contains cycles the expectation cannot
be calculated exactly in any reasonable amount of time, so
we approximate it using Loopy Belief Propagation (LBP),
an extension of Belief Propagation [15] to graphs with cy-
cles. A detailed description of probabilistic LBP for fac-
tor graphs in terms of the general sum-product algorithm is
described by Kschischang et. al. [6]. Since our CRF is
chain-structured, we use a message passing schedule which
propagates messages in alternating forwards and backwards
passes in a similar way to the Forwards-Backwards algo-
rithm for Hidden Markov Models.

The two sets of parameters to be estimated in the max-
imisation step are the probability histograms in the leaves



Figure 7. Sample frames from the two scenes on which the system
was tested. In the first scene, most people are moving but in the
second scene most people are stationary. The second scene also
exhibits significant distortion, which we train for implicitly.

of the randomised trees and the vector φ of motion prob-
abilities from the image differences factors. The leaf his-
tograms are maximised when they are equal to the mean
of the expected gaze directions for all of the images reach-
ing the leaf, which is the standard training process for trees.
The motion probabilities are maximised by marginalising
over the factors for all pairs of images in the dataset.

4. Evaluation
The system was evaluated on the tracking output from

two large video sequences of different scenes, shown in fig-
ure 7. Both scenes are public places where pedestrians ex-
hibit a wide variety of appearances due to hats, sunglasses
and different clothing. The mean size of the head images in
both cases was 24× 26 pixels.

The first dataset is from an outdoor town centre scene
where the majority of pedestrians are walking and consists
of 473412 images from 2259 people. Every one hundredth
image in the dataset was hand labelled to provide ground
truth, a total of 4347 images. This sequence is publicly
available and we will make our images with ground truth
available to enable future comparisons. The second dataset
covers a busy transport terminal where the majority of peo-
ple are stationary and consists of 639581 images from 3861

Test Dataset
Method Town Centre Terminal
Our Unsupervised System 23.9 38.5
Supervised Ferns [2] 45.5 59.2
Walking Direction 25.9 78.4

Table 1. Gaze estimation performance (MAAE in degrees) of our
unsupervised system compared with that of conventionally trained
classifiers and the walking direction baseline. Our system outper-
forms the other approaches on both datasets.

people.
The performance of the system was measured using the

Mean Absolute Angular Error (MAAE), which is stated in
degrees. A baseline performance measure was obtained by
assuming that the gaze direction is the same as the walking
direction. This baseline provides very good estimates for
the Town Centre dataset, since most people look in their di-
rection of travel, however in the Transport Terminal dataset
there are many stationary people so the direction of travel is
often incorrect.

The system was also compared with a classifier that we
developed in our previous work [2] which was based on ran-
domised ferns and was trained using approximately 1500
head images that were cropped from still photos of different
people that were acquired from other datasets and internet
image searches.

The results of applying the system to the two large video
datasets are shown in table 1. In both datasets, our sys-
tem significantly outperforms the supervised ferns, which
demonstrates the value of learning the scene-specific classi-
fier. Since most people in the Town Centre dataset look in
their direction of travel, there is not much to be learned, so
we only marginally outperform the walking direction base-
line. In the Transport Terminal dataset there are many sta-
tionary people so our system performs considerably better
than the walking direction baseline, which is almost ran-
dom.

Although one of the benefits of the unsupervised learn-
ing approach is the ability to learn scene-specific classifiers,
to provide some additional insight the learned randomised
forests were tested in isolation (without the CRF) on each of
the two video datasets as well as the still images that were
used to train the supervised classifier. It should be noted
that this is not the intended usage of the system, since for
any practical purpose the combination of the CRF model
and the learned trees would be used rather than just the trees
alone.

The results from testing the randomised forest in isola-
tion are shown in table 2. An important conclusion from
these results is that we can use the walking direction to learn
a randomised forest classifier, but the classifier remains ef-
fective even when the walking direction is not used in the



Method Training Dataset Testing Dataset
Town Centre Transport Terminal Still Images

Unsupervised Trees Town Centre 25.6 47.8 60.2
Unsupervised Trees Terminal 64.9 42.9 71.4
Supervised Ferns [2] Still Images 45.5 59.2 43.5

Table 2. Comparison of the performance (MAAE in degrees) of the learned forest of randomised tree classifiers when trained and tested
on the two video datasets and the still image dataset. For these experiments the CRF model was not used for testing. When the supervised
ferns were tested on the still image dataset, 80% of the data was used for training and the remaining 20% for testing. The results show that
the learned classifiers still outperform the supervised ferns even in the absence of motion information.

estimation at testing time.
In the absence of the CRF model, the randomised forests

that were learned from the Town Centre and Transport Ter-
minal datasets each perform best on the dataset from which
they were learned, however the Town Centre forest appears
to generalise better and is more accurate when tested on the
still image dataset. A likely reason for this is that although
both video datasets are large, most of the information for
learning the classifiers comes from people who are walking.
The Town Centre dataset has 441048 images from moving
people, compared to only 69512 images from moving peo-
ple in the Transport Terminal dataset. Many of these images
will be similar, since we acquire around 200 images from
each person, making approximately 420 different informa-
tive people in the Transport Terminal dataset in comparison
to approximately 2100 in the Town Centre dataset. It is
likely that this variation in appearances during training is
responsible for the better performance of the Town Centre
classifier, however this is not a limitation of the approach in
general because a deployed system would be able to con-
stantly improve the classifier over many days or years.

Many of the errors in the Transport Terminal dataset
were caused because people often walk backwards to im-
prove their view of the departure board. Since the data that
was used to learn the model parameters did not include sit-
uations like this, our model considers this to be almost im-
possible. The result is that an incorrect gaze estimate (usu-
ally the direction of motion) is fed back into the randomised
forest, where it has a negative affect on the estimations for
other people on subsequent iterations. This issue could be
resolved either by using training data from a wider variety
of scenes to learn the model parameters, or by modifying
the tracker to detect abnormal walking patterns so that they
could be omitted.

Sample observation sequences and smoothed probabili-
ties for two individuals are shown in figure 8.

5. Conclusion

We have developed a system which is capable of learn-
ing a gaze classifier from surveillance video without any
human intervention. Our evaluation has shown that the per-

formance of these scene-specific classifiers exceeds that of
a conventionally trained classifier on the scene where they
were learned.

Our implementation is able to learn classifiers from
batches of data in approximately double the amount of time
that is required to generate it, so a real-time online imple-
mentation is feasible. An online implementation would al-
low a potentially unlimited amount of training data to be
used, which would almost certainly result in improved per-
formance.

If the system were installed in a number of different lo-
cations, the results from the learning could be automatically
shared with other systems to improve performance, allow-
ing far more training data to be incorporated than would
otherwise be possible. The learned classifier from multi-
ple forests of decision trees could be easily combined if the
same set of random decisions were chosen across all instal-
lations.
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